RSS-Feed abonnieren
DOI: 10.1055/s-2007-981212
© Georg Thieme Verlag Stuttgart · New York
Nuklearmedizinische Verfahren in der Diagnostik der Demenzerkrankungen
Nuclear Medicine Imaging in the Diagnosis of DementiasPublikationsverlauf
Publikationsdatum:
28. Februar 2008 (online)
Zusammenfassung
Die aufgrund der demografischen Entwicklung zunehmende Zahl von Demenzerkrankungen stellt ein zunehmendes medizinisches und soziökonomisches Problem dar. Insbesondere vor dem Hintergrund neuer und in Entwicklung befindlicher Therapieoptionen wird eine sichere Früh- und Differenzialdiagnostik zunehmend an Bedeutung gewinnen, um in einem möglichst frühen Krankheitsstadium geeignete Therapien einzuleiten. Die funktionelle Bildgebung mittels PET und SPECT kann hierzu einen wichtigen Beitrag leisten; so stellt insbesondere die [18F]FDG-PET eine höchst empfindliche Methode zur Frühdiagnose neurodegenerativer Demenzerkrankungen dar. Der vorliegende Artikel soll einen Überblick über den aktuellen Stand der nuklearmedizinischen Demenzdiagnostik geben und die pathognomonischen Befundmuster und ihre Differenzialdiagnosen aufzeigen.
Abstract
Due to the current demographic development, the increasing prevalence of dementias represents a serious medical and economical issue. With regard to new and upcoming treatment options, based on this background, the reliable early and differential diagnosis will be of increasing importance, in order not to delay suitable therapies. Functional brain imaging by means of PET and SPECT can substantially contribute to this diagnostic challenge, and PET using [18F]FDG could be shown to be a highly sensitive method for the early diagnosis of neurodegenerative dementias. The purpose of this article is to give a survey on the current state of nuclear medicine imaging of dementias and to present the typical brain metabolic findings and their differential diagnoses.
Schlüsselwörter
Demenz - Alzheimer - Lewy Bodies - PET - SPECT
Key words
dementia - Alzheimer - Lewy Bodies - PET - SPECT
Literatur
- 1 Forstl H, Kurz A. Clinical features of Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci. 1999; 249 288-290
- 2 McKhann G, Drachman D, Folstein M. et al . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34 939-944
- 3 Hebert L E, Scherr P A, Bienias J L. et al . Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003; 60 1119-1122
- 4 Alafuzoff I. The pathology of dementias: an overview. Acta Neurol Scand Suppl. 1992; 139 8-15
- 5 Gotz J, Ittner L M, Schonrock N. Alzheimer's disease and frontotemporal dementia: prospects of a tailored therapy?. Med J Aust. 2006; 185 381-384
- 6 Olsen C E, Poulsen H D, Lublin H K. Drug therapy of dementia in elderly patients. A review. Nord J Psychiatry. 2005; 59 71-77
- 7 Kaufer D I. Pharmacologic therapy of dementia with Lewy bodies. J Geriatr Psychiatry Neurol. 2002; 15 224-232
- 8 Herholz K, Schopphoff H, Schmidt M. et al . Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med. 2002; 43 21-26
- 9 Silverman D H. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004; 45 594-607
- 10 Phelps M E, Schelbert H R, Mazziotta J C. Positron computed tomography for studies of myocardial and cerebral function. Ann Intern Med. 1983; 98 339-359
- 11 Magistretti P J, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999; 354 1155-1163
- 12 Rocher A B, Chapon F, Blaizot X. et al . Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage. 2003; 20 1894-1898
- 13 Bartenstein P, Minoshima S, Hirsch C. et al . Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT. J Nucl Med. 1997; 38 1095-1101
- 14 Drzezga A, Grimmer T, Riemenschneider M. et al . Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med. 2005; 46 1625-1632
- 15 Minoshima S, Frey K A, Koeppe R A. et al . A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995; 36 1238-1248
- 16 Herholz K. PET studies in dementia. Ann Nucl Med. 2003; 17 79-89
- 17 Petkova A T, Ishii Y, Balbach J J. et al . A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA. 2002; 99 16742-16747
- 18 Petersen R C, Smith G E, Waring S C. et al . Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999; 56 303-308
- 19 Herholz K. FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord. 1995; 9 6-16
- 20 Minoshima S. Imaging Alzheimer's disease: clinical applications. Neuroimaging Clin N Am. 2003; 13 769-780
- 21 Silverman D H, Small G W, Chang C Y. et al . Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. Jama. 2001; 286 2120-2127
- 22 Mazziotta J C, Frackowiak R S, Phelps M E. The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med. 1992; 22 233-246
- 23 Salmon E, Sadzot B, Maquet P. et al . Differential diagnosis of Alzheimer's disease with PET. J Nucl Med. 1994; 35 391-398
- 24 Minoshima S, Giordani B, Berent S. et al . Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997; 42 85-94
- 25 Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005; 32 486-510
- 26 Reiman E M, Caselli R J, Yun L S. et al . Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996; 334 752-758
- 27 Zamrini E, De Santi S, Tolar M. Imaging is superior to cognitive testing for early diagnosis of Alzheimer's disease. Neurobiol Aging. 2004; 25 685-691
- 28 Petrella J R, Coleman R E, Doraiswamy P M. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology. 2003; 226 315-336
- 29 Lim A, Tsuang D, Kukull W. et al . Clinico-neuropathological correlation of Alzheimer's disease in a community-based case series. J Am Geriatr Soc. 1999; 47 564-569
- 30 Silverman D H, Gambhir S S, Huang H W. et al . Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med. 2002; 43 253-266
- 31 Silverman D H, Cummings J L, Small G W. et al . Added clinical benefit of incorporating 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography into the clinical evaluation of patients with cognitive impairment. Mol Imaging Biol. 2002; 4 283-293
- 32 Knopman D S, DeKosky S T, Cummings J L. et al . Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56 1143-1153
- 33 Drzezga A, Lautenschlager N, Siebner H. et al . Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003; 30 1104-1113
- 34 Alexander G E, Chen K, Pietrini P. et al . Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. Am J Psychiatry. 2002; 159 738-745
- 35 Stefanova E, Wall A, Almkvist O. et al . Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease. J Neural Transm. 2006; 113 205-218
- 36 Kuhl D E, Koeppe R A, Minoshima S. et al . In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999; 52 691-699
- 37 Selkoe D J. Alzheimer's disease is a synaptic failure. Science. 2002; 298 789-791
- 38 Price J L, Morris J C. Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol. 1999; 45 358-368
- 39 Klunk W E, Engler H, Nordberg A. et al . Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004; 55 306-319
- 40 Price J C, Klunk W E, Lopresti B J. et al . Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005; 25 1528-1547
- 41 Lopresti B J, Klunk W E, Mathis C A. et al . Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005; 46 1959-1972
- 42 Mintun M A, Larossa G N, Sheline Y I. et al . [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006; 67 446-452
- 43 Neary D, Snowden J S, Gustafson L. et al . Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998; 51 1546-1554
- 44 Diehl J, Grimmer T, Drzezga A. et al . Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging. 2004; 25 1051-1056
- 45 Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med. 2002; 16 515-525
- 46 Drzezga A, Grimmer T, Siebner H. et al . Prominent hypometabolism of the right temporoparietal and frontal cortex in two left-handed patients with primary progressive aphasia. J Neurol. 2002; 249 1263-1267
- 47 Diehl-Schmid J, Grimmer T, Drzezga A. et al . Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement Geriatr Cogn Disord. 2006; 22 346-351
- 48 Nestor P J, Fryer T D, Hodges J R. Declarative memory impairments in Alzheimer's disease and semantic dementia. Neuroimage. 2006; 30 1010-1020
- 49 McKeith I G, Dickson D W, Lowe J. et al . Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005; 65 1863-1872
- 50 Vander Borght T, Minoshima S, Giordani B. et al . Cerebral metabolic differences in Parkinson's and Alzheimer's diseases matched for dementia severity. J Nucl Med. 1997; 38 797-802
- 51 Mahapatra R K, Edwards M J, Schott J M, Bhatia K P. Corticobasal degeneration. Lancet Neurol. 2004; 3 736-743
- 52 McKeith I, O'Brien J, Walker Z. et al . Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007; 6 305-313
- 53 Plotkin M, Amthauer H, Klaffke S. et al . Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm. 2005; 112 677-692
- 54 Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000; 101 11-20
- 55 Sadowski M, Pankiewicz J, Scholtzova H. et al . Links between the pathology of Alzheimer's disease and vascular dementia. Neurochem Res. 2004; 29 1257-1266
- 56 Kerrouche N, Herholz K, Mielke R. et al . 18FDG PET in vascular dementia: differentiation from Alzheimer's disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab. 2006; 26 1213-1221
- 57 Sabri O, Schneider R, Buell U. Comparison of PET, SPET, neuropsychological and morphological findings in vascular dementia. Eur J Nucl Med. 1997; 24 348-349
PD Dr. A. Drzezga
Nuklearmedizinische Klinik · Klinikum rechts der Isar der Technischen Universität München
Ismaninger Str. 22
81675 München
Telefon: +49/89/41 40 29 71
Fax: +49/89/41 40 48 41
eMail: a.drzezga@lrz.tu-muenchen.de