Der Nuklearmediziner 2007; 30(4): 242-256
DOI: 10.1055/s-2007-981340
Gerätetechnik und PACS

© Georg Thieme Verlag Stuttgart · New York

Produktentwicklung mit Augenmaß im Hinblick auf die ökonomischen Verhältnisse im Gesundheitswesen

Product Development Tailored to Fit the Economic Conditions in the Healthcare SystemT. Kittner1 , W. Niederlag2 , J. G. V. Schiffer3 , R. Standke3
  • 1Radiologische Klinik, Krankenhaus Dresden-Friedrichstadt
  • 2Zentraler Klinikservice, Krankenhaus Dresden-Friedrichstadt
  • 3GE Healthcare, Solingen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. Dezember 2007 (online)

Zusammenfassung

Die Produktentwicklung in der Medizintechnik vollzieht sich gleichermaßen in den Bereichen der Hard- und der Software. Eine kostengünstige Möglichkeit, die Leistungsfähigkeit vorhandener Medizinprodukte zu steigern, besteht in der Entwicklung angepasster Software, die darüber hinaus auch einfacher nachzurüsten ist. So können beispielsweise die Sensitivität und die räumliche Auflösung eines PET-Scanners oder einer SPECT-Gammakamera durch den Einsatz aufwendiger Rekonstruktionsverfahren erheblich verbessert werden. Die Nutzung dieser rechenintensiven Verfahren in der Routine wird durch die rasante Entwicklung im Bereich der Computertechnologie ermöglicht. Anhand dreier Beiträge wird gezeigt, welchen Nutzen reine Software in der täglichen Routine zu bringen vermag.

Abstract

Product development in medical technology is taking place likewise for hardware and software. A cost-effective way to improve the performance of existing medical products is the development of dedicated easy upgradable software. Installing additional complex reconstruction algorithm packages can improve the sensitivity and spatial resolution of PET scanners or SPECT systems dramatically. The rapid improving computer power today allows the implementation of computational very intensive algorithms. For three applications the advantage of pure software implementations in the daily routine is shown.

Literatur

  • 1 Browne J, de Pierro A B. A row-action alternative to the EM Algorithm for maximizing likelihood in emission tomography.  IEEE Trans Medical Imaging. 1996;  15 687-699
  • 2 Budinger T F, Gullberg G T, Huesman R H. Emission computed tomography. In: Herman GT (eds). Image Reconstruction from Projections: Implementation and Application. Springer, 1979; 147-246
  • 3 DeFrise M. Inverse problems.  Medical Imaging. 1995;  11 983-994
  • 4 DeFrise M. et al . A Factorization method for the 3D X-ray transform exact and approximate rebinning algorithms for 3D PET data.  IEEE Trans Medical Imaging. 1997;  16 145-158
  • 5 Fessler J A. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Medical Imaging 1994
  • 6 Filippi L, Schillaci O. Usefulness of hybrid SPECT / CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections.  J Nucl Med. 2006;  47 1908-1913
  • 7 Frey E C, Gilland K L, Tsui B MW. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT.  IEEE Transactions on Medical Imaging. 2002;  21 1040-1050
  • 8 Frey E C, Tsui B MW. Collimator-Detector Response Compensation in SPECT. In: Quantitative Analysis in Nuclear Medicine Imaging. Springer, 2005
  • 9 Geworski L. Voraussetzungen für die Quantifizierung in der Emissions-Tomographie. Habilitationsschrift 2003, Humboldt-Universität zu Berlin
  • 10 Gifford H C. et al . LROC analysis of detector-response compensation in SPECT.  IEEE Transactions on Medical Imaging. 2000;  19 463-473
  • 11 He X. et al . A mathematical observer study for the evaluation and optimization of compensation methods for myocardial SPECT using a phantom population that realistically models patient variability.  IEEE Transactions on Nuclear Science. 2004;  51 218-224
  • 12 Keidar Z. et al .Half-time bone SPECT acquisition - Assessment of a new Collimator Detector Response (CDR) reconstruction algorithm. Abstract submitted to RSNA Meeting 2005
  • 13 Kohli V. et al . Compensation for distancedependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness.  IEEE Transactions on Nuclear Science. 1998;  45 1104-1110
  • 14 Krausz Y, Israel O. Single-photon emission computed tomography/computed tomography in endocrinology.  Semin Nucl Med. 2006;  36 267-274
  • 15 Meikle S R. et al . Accelerated EM reconstruction in total-body PET: Potential for improving tumor detectability.  Phys Med Biol. 1994;  39 1689-1704
  • 16 Metz C E. The geometric transfer function component for scintillation camera collimators with straight parallel holes.  Phys Med Biol. 1980;  25 1059-1070
  • 17 Narayanan M V. et al . Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for Tc-99m myocardial perfusion imaging.  J Nucl Med. 2003;  44 1725-1734
  • 18 Pretorius P H. et al . Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction.  Physics in Medicine and Biology. 1998;  43 407-420
  • 19 Pretorius P H. et al . Comparison of detection accuracy of perfusion defects in SPECT for different reconstruction strategies using polar-map quantitation.  IEEE Transactions on Nuclear Science. 2003;  50 1569-1574
  • 20 Sankaran S. et al . Optimum compensation method and filter cutoff frequency in myocardial SPECT: A human observer study.  J Nucl Med. 2002;  43 432-438
  • 21 Schillaci O. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.  Semin Nucl Med. 2006;  36 275-285
  • 22 Schillaci O, Filippi L, Danieli R, Simonetti G. Single-photon emission computed tomography/computed tomography in abdominal diseases.  Semin Nucl Med.. 2007;  37 48-61
  • 23 Schillaci O, Filippi L, Manni C, Santoni R. Single-photon emission computed tomography/computed tomography in brain tumors.  Semin Nucl Med.. 2007;  37 34-47
  • 24 Shepp L A, Vardi Y. Maximum likelihood reconstruction in positron emission tomography. IEEE Trans Medical Imaging 1982
  • 25 Tonge C M, Ellul G, Pandit M, Lawson R S, Shields R A, Arumugam P, Prescott M C. The value of registration correction in the attenuation correction of myocardial SPECT studies using low resolution computed tomography images.  Nucl Med Commun. 2006;  27 843-852
  • 26 Tsui B MW. et al . Implementation of simultaneous attenuation and detector response correction in SPECT.  IEEE Transactions on Nuclear Science. 1988;  35 778-783
  • 27 Tsui B MW. et al . The importance and implementation of accurate threedimensional compensation methods for quantitative SPECT.  Phys Med Biol. 1994;  39 509-530
  • 28 Tsui B MW. et al .Characteristics of reconstructed point response in threedimensional spatially variant detector response compensation in SPECT. In: Grangeat P, Amans JL (eds). Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Kluwer Academic Publishers, 1996; 509-530
  • 29 Tsui B MW, Gullberg G T. The geometric transfer-function for cone and fan beam collimators.  Physics in Medicine and Biology. 1990;  35 81-93
  • 30 Tsui B MW, Zhao X D, Frey E C, McCartney W H. Quantitative SPECT: Basics and clinical considerations.  Seminar in Nuclear Medicine. 1994;  XXIV No. 1 38-65
  • 31 Volokh L. et al .Efficacy of corrective reconstruction with collimator detector response compensation for short Tc-99m bone SPECT acquisition in a bone lesion detection task. Abstract presented at SNM Meeting 2005
  • 32 Wang W, Hu Z, Gualtieri E E, Parma M J, Walsh E S, Sebok D, Hsieh Y L, Tung C H, Song X, Griemer J J, Kolthammer J A, Popescu L M, Werner M, Karp J S, Gagnon D. Systematic and distributed time-of-flight list mode PET reconstruction.  Nuclear Science Symposium Conference Record IEEE. 2006;  3 1715-1722
  • 33 Wilson D W, Barrett H H. The effects of incorrect modeling on noise and resolution properties of ML-EM images.  IEEE Transactions on Nuclear Science. 2002;  49 768-773
  • 34 Wilson J W, Turkington T G. Image quality vs. NEC in 2D and 3D PET.  IEEE. 2005;  4 2133-2137 , In: Wilson JM, Colsher JG, Ross SG. Nuclear Science Symposium Conference Record, 2005. IEEE 2005; 4 (23-29 Oct.): 2133-2137

J. G. V. Schiffer

GE Healthcare

Beethovenstr. 239

42655 Solingen

Telefon: 04 91 / 4 54 37 75

eMail: johanngeorg.schiffer@ge.com