Subscribe to RSS
DOI: 10.1055/s-2007-981476
© Georg Thieme Verlag KG Stuttgart · New York
The Molecular Pathogenesis of Childhood Adrenocortical Tumors
Publication History
received 1.11.2006
accepted 18.4.2007
Publication Date:
18 June 2007 (online)
Abstract
Adrenocortical tumors in children and adolescents are rare events. However, the high incidence of adrenocortical tumors in children from the Southern region of Brazil is particularly remarkable, since it has been estimated to be approximately 10-15 times greater than the worldwide incidence. To date, there are no histological or molecular markers that can reliably distinguish benign from malignant adrenocortical tumors. The study of rare genetic syndromes associated with adrenocortical tumors has greatly contributed to the elucidation of sporadic adrenocortical tumorigenesis. Recently, considerable advances toward understanding the molecular mechanisms of adrenocortical tumorigenesis in Brazilian children and adolescents with sporadic adrenocortical tumors have been made. Some of the molecular aspects of sporadic adrenocortical tumors arising in children and adolescents are reviewed here.
Key words
Adrenocortical tumorigenesis - children - p53 - IGF2 - SF-1
References
- 1 Young Jr JL, Miller RW. Incidence of malignant tumors in U. S. children. J Pediatr. 1975; 86 254-258
- 2 Sandrini R, Ribeiro RC, DeLacerda L. Childhood adrenocortical tumors. J Clin Endocrinol Metab. 1997; 82 2027-2031
- 3 Latronico AC, Chrousos GP. Extensive personal experience: adrenocortical tumors. J Clin Endocrinol Metab. 1997; 82 1317-1324
- 4 Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol. 1984; 8 163-169
- 5 Mendonca BB, Lucon AM, Menezes CA, Saldanha LB, Latronico AC, Zerbini C, Madureira G, Domenice S, Albergaria MA, Camargo MH. Clinical, hormonal and pathological findings in a comparative study of adrenocortical neoplasms in childhood and adulthood. J Urol. 1995; 154 2004-2009
- 6 Wieneke JA, Thompson LD, Heffess CS. Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. Am J Surg Pathol. 2003; 27 867-881
- 7 Levine AJ. The p53 tumor-suppressor gene. N Engl J Med. 1992; 326 1350-1352
- 8 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991; 253 49-53
- 9 Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993; 329 1318-1327
- 10 Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991; 252 1708-1711
- 11 Yano T, Linehan M, Anglard P, Lerman MI, Daniel LN, Stein CA, Robertson CN, LaRocca R, Zbar B. Genetic changes in human adrenocortical carcinomas. J Natl Cancer Inst. 1989; 81 518-523
- 12 Reincke M, Karl M, Travis WH, Mastorakos G, Allolio B, Linehan HM, Chrousos GP. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab. 1994; 78 790-794
- 13 Lin SR, Lee YJ, Tsai JH. Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab. 1994; 78 483-491
- 14 Reincke M, Wachenfeld C, Mora P, Thumser A, Jaursch-Hancke C, Abdelhamid S, Chrousos GP, Allolio B. p53 mutations in adrenal tumors: Caucasian patients do not show the exon 4 “hot spot” found in Taiwan. J Clin Endocrinol Metab. 1996; 81 3636-3638
- 15 Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, Sandrini R. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA. 2001; 98 9330-9335
- 16 Latronico AC, Pinto EM, Domenice S, Fragoso MC, Martin RM, Zerbini MC, Lucon AM, Mendonca BB. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab. 2001; 86 4970-4973
- 17 Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990; 250 1233-1238
- 18 Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990; 348 747-749
- 19 Malkin D, Jolly KW, Barbier N, Look AT, Friend SH, Gebhardt MC, Andersen TI, Borresen AL, Li FP, Garber J. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med. 1992; 326 1309-1315
- 20 Figueiredo BC, Sandrini R, Zambetti GP, Pereira RM, Cheng C, Liu W, Lacerda L, Pianovski MA, Michalkiewicz E, Jenkins J, Rodriguez-Galindo C, Mastellaro MJ, Vianna S, Watanabe F, Sandrini F, Arram SB, Boffetta P, Ribeiro RC. Penetrance of adrenocortical tumors associated with the germline TP53 R337H mutation. J Med Genet. 2006; 43 91-96
- 21 Varley JM, McGown G, Thorncroft M, James LA, Margison GP, Forster G, Evans DG, Harris M, Kelsey AM, Birch JM. Are there low-penetrance TP53 Alleles? evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999; 65 995-1006
- 22 Pinto EM, Billerbeck AE, Villares MC, Domenice S, Mendonca BB, Latronico AC. Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors. Arq Bras Endocrinol Metabol. 2004; 48 647-650
- 23 Esrig D, Elmajian D, Groshen S, Freeman JA, Stein JP, Chen SC, Nichols PW, Skinner DG, Jones PA, Cote RJ. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 1994; 331 1259-1264
- 24 Ichikawa A, Kinoshita T, Watanabe T, Kato H, Nagai H, Tsushita K, Saito H, Hotta T. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med. 1997; 337 529-534
- 25 Pinto EM, Billerbeck AE, Fragoso MC, Mendonca BB, Latronico AC. Deletion mapping of chromosome 17 in benign and malignant adrenocortical tumors associated with the Arg337His mutation of the p53 tumor suppressor protein. J Clin Endocrinol Metab. 2005; 90 2976-2981
- 26 Gicquel C, Bertagna X, Gaston V, Coste J, Louvel A, Baudin E, Bertherat J, Chapuis Y, Duclos JM, Schlumberger M, Plouin PF, Luton JP, Le Bouc Y. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res. 2001; 61 6762-6767
- 27 DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol. 2002; 9 12-16
- 28 Achatz MI, Olivier M, Calvez FL, Martel-Planche G, Lopes A, Rossi BM, Ashton-Prolla P, Giugliani R, Palmero EI, Vargas FR, Rocha JC, Vettore AL, Hainaut P. The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett. 2007; 245 96-102
- 29 Achatz MI, Olivier M, Calvez FL, Martel-Planche G, Lopes A, Rossi BM, Ashton-Prolla P, Vargas FR, Casali da Rocha JC, Vettore AL, Hainaut P. Response to “Germline TP53 mutation R337H is not sufficient to establish Li-Fraumeni or Li-Fraumeni-like syndrome”, by Ribeiro RC et al. Cancer Lett. 2007; 247 356-358
- 30 Barzilay JI, Pazianos AG. Adrenocortical carcinoma. Urol Clin North Am. 1989; 16 457-468
- 31 Latronico AC, Reincke M, Mendonca BB, Arai K, Mora P, Allolio B, Wajchenberg BL, Chrousos GP, Tsigos C. No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab. 1995; 80 875-877
- 32 Light K, Jenkins PJ, Weber A, Perrett C, Grossman A, Pistorello M, Asa SL, Clayton RN, Clark AJ. Are activating mutations of the adrenocorticotropin receptor involved in adrenal cortical neoplasia?. Life Sci. 1995; 56 1523-1527
- 33 Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B. Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab. 1997; 82 3054-3058
- 34 Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991; 325 1688-1695
- 35 Reincke M, Karl M, Travis W, Chrousos GP. No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms. J Clin Endocrinol Metab. 1993; 77 1419-1422
- 36 Gicquel C, Dib A, Bertagna X, Amselem S, Le Bouc Y. Oncogenic mutations of alpha-Gi2 protein are not determinant for human adrenocortical tumorigenesis. Eur J Endocrinol. 1995; 133 166-172
- 37 Latronico AC, Mendonca BB, Bianco AC, Villares SM, Lucon MA, Nicolau W, Wajchenberg BL. Calcium-dependent protein kinase-C activity in human adrenocortical neoplasms, hyperplastic adrenals, and normal adrenocortical tissue. J Clin Endocrinol Metab. 1994; 79 736-739
- 38 Yashiro T, Hara H, Fulton NC, Obara T, Kaplan EL. Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia. World J Surg. 1994; 18 455-460
- 39 Moul JW, Bishoff JT, Theune SM, Chang EH. Absent ras gene mutations in human adrenal cortical neoplasms and pheochromocytomas. J Urol. 1993; 149 1389-1394
- 40 Ilvesmaki V, Blum WF, Voutilainen R. Insulin-like growth factor binding proteins in the human adrenal gland. Mol Cell Endocrinol. 1993; 97 71-79
- 41 Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997; 18 378-403
- 42 Weber MM, Fottner C, Schmidt P, Brodowski KM, Gittner K, Lahm H, Engelhardt D, Wolf E. Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology. 1999; 140 1537-1543
- 43 DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991; 64 849-859
- 44 Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumor-suppressor activity of H19 RNA. Nature. 1993; 365 764-767
- 45 Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995; 9 650-662
- 46 Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990; 10 28-36
- 47 Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993; 362 751-755
- 48 Hatada I, Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995; 11 204-206
- 49 Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet. 1989; 44 720-723
- 50 Henry I, Jeanpierre M, Couillin P, Barichard F, Serre JL, Journel H, Lamouroux A, Turleau C, de Grouchy J, Junien C. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet. 1989; 81 273-277
- 51 Gicquel C, Bertagna X, Schneid H, Francillard-Leblond M, Luton JP, Girard F, Le Bouc Y. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab. 1994; 78 1444-1453
- 52 Gicquel C, Raffin-Sanson ML, Gaston V, Bertagna X, Plouin PF, Schlumberger M, Louvel A, Luton JP, Le Bouc Y. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab. 1997; 82 2559-2565
- 53 Wilkin F, Gagne N, Paquette J, Oligny LL, Deal C. Pediatric adrenocortical tumors: molecular events leading to insulin-like growth factor II gene overexpression. J Clin Endocrinol Metab. 2000; 85 2048-2056
- 54 Almeida MQ, Nishi MY, Costa MHS, Fragoso MCBV, Mendonca BB, Latronico AC. Expression profiles of IGF2 and IGF receptor type 1 in childhood adrenocortical tumors: prognostic and therapeutic implications. J Pediatr Endocrinol Metab. 2006; 19 ((Suppl 3)) 1066-1066
- 55 Logie A, Boulle N, Gaston V, Perin L, Boudou P, Le Bouc Y, Gicquel C. Autocrine role of IGF2 in proliferation of human adrenocortical carcinoma NCI H295R cell line. J Mol Endocrinol. 1999; 23 23-32
- 56 Wang Y, Sun Y. Insulin-like growth factor receptor-1 as an anti-cancer target. Blocking transformation and inducing apoptosis. Curr Cancer Drug Targets. 2002; 2 191-207
- 57 Figueiredo BC, Stratakis CA, Sandrini R, DeLacerda L, Pianovsky MA, Giatzakis C, Young HM, Haddad BR. Comparative genomic hybridization analysis of adrenocortical tumors of childhood. J Clin Endocrinol Metab. 1999; 84 1116-1121
- 58 James LA, Kelsey AM, Birch JM, Varley JM. Highly consistent genetic alterations in childhood adrenocortical tumors detected by comparative genomic hybridization. Br J Cancer. 1999; 81 300-304
- 59 Kjellman M, Kallioniemi OP, Karhu R, Hoog A, Farnebo LO, Auer G, Larsson C, Backdahl M. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res. 1996; 56 4219-4223
- 60 Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer. 2000; 28 145-152
- 61 West AN, Neale GA, Pounds S, Figueredo BC, Galindo CR, Pianovski MAD, Oliveira Filho AG, Malkin D, Lalli E, Ribeiro R, Zambetti GP. Gene Expression profiling of childhood adrenocortical tumors. Cancer Res. 2007; 67 600-608
- 62 Keegan CE, Hammer GD. Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol Metab. 2002; 13 200-208
- 63 Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol. 1993; 7 852-860
- 64 Parker KL, Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev. 1997; 18 361-377
- 65 Beuschlein F, Mutch C, Bavers DL, Ulrich-Lai YM, Engeland WC, Keegan C, Hammer GD. Steroidogenic factor-1 is essential for compensatory adrenal growth following unilateral adrenalectomy. Endocrinology. 2002; 143 3122-3135
- 66 Figueiredo BC, Cavalli LR, Pianovski MA, Lalli E, Sandrini R, Ribeiro RC, Zambetti G, DeLacerda L, Rodrigues GA, Haddad BR. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J Clin Endocrinol Metab. 2005; 90 615-619
- 67 Pianovski MA, Cavalli LR, Figueiredo BC, Santos SC, Doghman M, Ribeiro RC, Oliveira AG, Michalkiewicz E, Rodrigues GA, Zambetti G, Haddad BR, Lalli E. SF-1 overexpression in childhood adrenocortical tumors. Eur J Cancer. 2006; 42 1040-1043
- 68 Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, Schwarz HP, Kaplan JC, Camerino G, Meitinger T, Monaco AP. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994; 372 672-676
- 69 Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature. 1997; 390 311-315
Correspondence
A. C. LatronicoMD
Unidade de Endocrinologia do Desenvolvimento e Laboratório de Hormônios e Genética Molecular LIM-42
Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
Av. Dr. Enéas de Carvalho Aguiar
155, 2° andar Bloco 6
05403-900, São Paulo
Brasil
Phone: +55/11/30 69 75 12
Fax: +55/11/30 69 75 19
Email: anacl@usp.br
Email: madsonalmeida@gmail.com