Horm Metab Res 2007; 39(6): 467-473
DOI: 10.1055/s-2007-981477
Review

© Georg Thieme Verlag KG Stuttgart · New York

Adrenocortical Tumors, Primary Pigmented Adrenocortical Disease (PPNAD)/Carney Complex, and other Bilateral Hyperplasias: The NIH Studies

C. A. Stratakis 1
  • 1Head, Program on Genetics and Endocrinology & Director, Pediatric Endocrinology, National Institute of Child Health & Human Development, Bethesda, Maryland
Weitere Informationen

Publikationsverlauf

received 12.4.2007

accepted 18.4.2007

Publikationsdatum:
18. Juni 2007 (online)

Abstract

It has been estimated that up to 1 in 10 adults has at least one adrenocortical nodule up to 1 cm on autopsy; these benign tumors may contribute to metabolic syndrome, hypertension, obesity and abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis that can be linked to other serious disorders such as osteoporosis, depression and late-onset diabetes mellitus. In addition, up to 1 in 1500 of these adrenal “incidentalomas” may hide a carcinoma, which, if diagnosed late or left untreated, is associated with significant morbidity and mortality. Consistent with the theme of this symposium, in the present report, we review the efforts undertaken at the National Institutes of Health (NIH) in the last quarter century to unravel the complex clinical genetics and molecular mechanisms involved in adrenal tumorigenesis. We first proposed that adrenocortical tumors form in a molecular sequence of events similar to that in other organs: as the pathology of the tumor increases towards malignancy, genetic changes accumulate. For example, known genetic associations, like TP53 gene changes, occur during the latest stages of adrenocortical tumorigenesis. At the NIH, significant progress has been made in the understanding of the genetics of primary pigmented adrenocortical disease (PPNAD) and other forms of bilateral adrenocortical hyperplasias. This recently led to the identification of phosphodiesterase 11A (PDE11A) mutations as a low-penetrance predisposing factor to adrenocortical hyperplasias of both the pigmented and non-pigmented variants.

References

  • 1 Orth DN, Kovacs WJ, DeBold CR. The adrenal cortex. In: Wilson JD, Foster DW (eds). Williams Textbook of Endocrinology. Philadelphia: W. B. Sauders 1992
  • 2 Gaunt R. History of the adrenal cortex. In: Greep RO, Astwood EB (eds). Handbook of physiology. Sect. 7: Endocrinology. Vol VI Adrenal gland. Washington DC: American Physiological Society 1975
  • 3 Latronico AC, Chrousos GP. Extensive personal experience: adrenocortical tumors.  J Clin Endocrinol Metab. 1997;  82 1317-1324
  • 4 Ross NS, Aron DC. Hormonal evaluation of the patient with an incidentally discovered adrenal mass.  N Engl J Med. 1990;  323 1401-1405
  • 5 Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B. Incidentally discovered adrenal masses.  Endocr Rev. 1995;  16 460-484
  • 6 King DR, Lack EE. Adrenal cortical carcinoma: a clinical and pathologic study of 49 cases.  Cancer. 1979;  44 239-244
  • 7 Lee JE, Evans DB, Hickey RC, Sherman SI, Gagel RF, Abbruzzese MC, Abbruzzese JL. Unknown primary cancer presenting as an adrenal mass: frequency and implications for diagnostic evaluation of adrenal incidentalomas.  Surgery. 1998;  124 1115-1122
  • 8 Cagel PT, Hough AJ, Pysher TJ. Comparison of adrenal cortical tumors in children and adults.  Cancer. 1986;  57 2235-2237
  • 9 Didolkar MS, Bescher RA, Elias EG. et al . Natural history of adrenal cortical carcinoma:a clinicopathologic study of 42 patients.  Cancer. 1981;  47 2153-2161
  • 10 Demeure MJ, Somberg LB. Functioning and nonfunctioning adrenocortical carcinoma: clinical presentation and therapeutic strategies.  Surg Oncol Clin N Am. 1998;  7 791-805
  • 11 Terzolo M, Ali A, Osella G, Mazza E. Prevalence of adrenal carcinoma among incidentally discovered adrenal masses. A retrospective study from 1989 to 1994. Gruppo Piemontese Incidentalomi Surrenalici.  Arch Surg. 1997;  132 914-919
  • 12 Kasperlik-Zaluska AA, Migdalska BM, Makowska AM. Incidentally found adrenocortical carcinoma. A study of 21 patients.  Eur J Cancer. 1998;  34 1721-1724
  • 13 Sandrini R, Ribeiro RC, DeLacerda L. Childhood adrenocortical tumors.  J Clin Endocrinol Metab. 1997;  82 2027-2031
  • 14 Skogseid B, Rastad J, Gobl A. et al . Adrenal lesion in multiple endocrine neoplasia type 1.  Surgery. 1995;  118 1077-1082
  • 15 Marchesa P, Fazio VW, Church JM, McGannon E. Adrenal masses in patients with familial adenomatous polyposis.  Dis Colon Rectum. 1997;  40 1023-1028
  • 16 Stratakis CA, Chrousos GP. In: Endocrine Tumors. Pizzo PA, Poplack DG (eds). Principles and Practice of Pediatric Oncology. Philadelphia PA: Lippincott-Raven Publishers 1997: 947-976
  • 17 Mayer SK, Oligny LL, Deal C, Yazbeck S, Gagne N, Blanchard H. Childhood adrenocortical tumors: case series and reevaluation of prognosis-a 24-year experience.  J Pediatr Surg. 1997;  32 911-915
  • 18 Teinturier C, Pauchard MS, Brugieres L, Landais P, Chaussain JL, Bougneres PF. Clinical and prognostic aspects of adrenocortical neoplasms in childhood.  Med Pediatr Oncol. 1999;  32 106-111
  • 19 Bornstein S, Stratakis CA, Chrousos GP. Recent advances in adrenocortical tumors.  Ann Intern Med. 1999;  759-771
  • 20 Beuschlein F, Reincke M, Karl M. et al . 1994 Clonal composition of human adrenocortical neoplasms.  Cancer Res. 1994;  54 4927-4932
  • 21 Latronico AC, Reincke M, Mendonca BB. et al . No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms.  J Clin Endocrinol Metab. 1995;  80 875-877
  • 22 Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B. Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis.  J Clin Endocrinol Metab. 1997;  82 3054-3058
  • 23 Reincke M, Karl M, Travis W, Chrousos GP. No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms.  J Clin Endocrinol Metab. 1993;  77 1419-1422
  • 24 Lyons J, Landis CA, Harsh G. et al . Two G protein oncogenes in human endocrine tumors.  Science. 1990;  249 655-659
  • 25 Reincke M. Mutations in adrenocortical tumors.  Horm Metab Res. 1998;  30 447-455
  • 26 Boston BA, Mandel S, LaFranchi S, Bliziotes M. Activating mutation in the stimulatory guanine nucleotide-binding protein in an infant with Cushing's syndrome and nodular adrenal hyperplasia.  J Clin Endocrinol Metab. 1994;  79 890-893
  • 27 Beuschlein F, Schulze E, Mora P. et al . Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors.  J Clin Endocrinol Metab. 1998;  83 2585-2588
  • 28 Tanabe A, Naruse M, Arai K. et al . Gene expression and roles of angiotensin II type 1 and type 2 receptors in human adrenals.  Horm Metab Res. 1998;  30 490-495
  • 29 Gortz B, Roth J, Speel EJ. et al . MEN1 gene mutation analysis of sporadic adrenocortical lesions.  Int J Cancer. 1999;  80 373-379
  • 30 Heppner C, Reincke M, Agarwal SK. et al . MEN1 gene analysis in sporadic adrenocortical neoplasms.  J Clin Endocrinol Metab. 1999;  84 216-219
  • 31 Wakatsuki S, Sasano H, Matsui T. et al . Adrenocortical tumor in a patient with familial adenomatous polyposis: a case associated with a complete inactivating mutation of the APC gene and unusual histologic features.  Hum Pathol. 1998;  29 302-306
  • 32 Marx C, Bornstein SR, Wolkersdorfer GT, Peter M, Sippell WG, Scherbaum WA. Relevance of major histocompatibility complex class II expression as a hallmark for the cellular differentiation in the human adrenal cortex.  J Clin Endocrinol Metab. 1997;  82 3136-3140
  • 33 Sasano H, Suzuki T, Shizawa S, Kato K, Nagura H. Transforming growth factor and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization.  Modern Pathol. 1994;  7 741-746
  • 34 Komminoth P, Roth J, Schroder S, Saremaslani P, Heitz PU. Overlapping expression of immunohistochemical markers and synaptophysin mRNA in pheochromocytomas and adrenocortical carcinomas. Implications for the differential diagnosis of adrenal gland tumors.  Lab Invest. 1995;  72 424-431
  • 35 Stratakis CA, Carney JA, Kirschner LS. et al . Synaptophysin immunoreactivity in primary pigmented nodular adrenocortical disease: neuroendocrine properties of tumors associated with Carney complex.  J Clin Endocrinol Metab. 1999;  84 1122-1128
  • 36 Clouston WM, Cannell GC, Fryar BG, Searle JW, Martin NI, Mortimer RH. Virilizing adrenal adenoma in an adult with the Beckwith-Wiedemann syndrome: paradoxical response to dexamethasone.  Clin Endocrinol (Oxf). 1989;  31 467-473
  • 37 Stratakis CA, Kirschner LS. Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome.  Horm Metab Res. 1998;  30 456-463
  • 38 Sarlis NJ, Chrousos GP, Doppman JL, Carney JA, Stratakis CA. Primary pigmented nodular adrenocortical disease: reevaluation of a patient with carney complex 27 years after unilateral adrenalectomy.  J Clin Endocrinol Metab. 1997;  82 1274-1278
  • 39 Renshaw AA, Granter SR. A comparison of A103 and inhibin reactivity in adrenal cortical tumors: distinction from hepatocellular carcinoma and renal tumors.  Mod Pathol. 1998;  11 1160-1164
  • 40 Longui CA. et al . Inhibin a-subunit (INHA) gene and locus changes in paediatric adrenocortical tumours from TP53 R337 H mutation heterozygote carriers.  J Med Genet. 2004;  41 354-359
  • 41 Pelkey TJ, Frierson HF, Mills SE. et al . The alpha subunit of inhibin in adrenal cortical neoplasia.  Mod Pathol. 1998;  11 516-524
  • 42 Henry I, Grandjouan S, Couillin P. et al . Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms tumor and in familial adrenocortical carcinoma.  Proc Natl Acad Sci USA. 1989;  86 3247-3251
  • 43 Henry I, Jeanpierre M, Couillin P. et al . Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma.  Hum Genet. 1989;  81 273-277
  • 44 Yano T, Linehan M, Anglard P. et al . Genetic changes in human adrenocortical carcinomas.  J Natl Cancer Inst. 1989;  81 518-523
  • 45 Gicquel C, Raffin-Sanson ML, Gaston V. et al . Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors.  J Clin Endocrinol Metab. 1997;  82 2559-2565
  • 46 Malkin D, Li FP, Strong LC. et al . Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.  Science. 1990;  250 1233-1238
  • 47 Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H. Tumors associated with p53 germline mutations: a synopsis of 91 families.  Am J Pathol. 1997;  150 1-13
  • 48 Sameshima Y, Tsunematsu Y, Watanabe S. et al . Detection of novel germ-line p53 mutations in diverse-cancer-prone families identified by selecting patients with childhood adrenocortical carcinoma.  J Natl Cancer Inst. 1992;  84 703-707
  • 49 Reincke M, Karl M, Travis WH. et al . p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies.  J Clin Endocrinol Metab. 1994;  78 790-794
  • 50 Ohgaki H, Kleihues P, Heitz PU. p53 mutations in sporadic adrenocortical tumors.  Int J Cancer. 1993;  54 408-410
  • 51 Wagner J, Portwine C, Rabin K, Leclerc JM, Narod SA, Malkin D. High frequency of germline p53 mutations in childhood adrenocortical cancer.  J Natl Cancer Inst. 1994;  86 1707-1710
  • 52 Lin SR, Lee YJ, Tsai JH. Mutations of the p53 gene in human functional adrenal neoplasms.  J Clin Endocrinol Metab. 1994;  78 483-491
  • 53 Kjellman M, Roshani L, Teh BT. et al . Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16.  J Clin Endocrinol Metab. 1999;  84 730-735
  • 54 Kjellman M, Kallioniemi OP, Karhu R. et al . Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy.  Cancer Res. 1996;  56 4219-4223
  • 55 Figueiredo BC, Stratakis CA, Sandrini R. et al . Comparative genomic hybridization analysis of adrenocortical tumors of childhood.  J Clin Endocrinol Metab. 1999;  84 1116-1121
  • 56 Moul JW, Bishoff JT, Theune SM, Chang EH. Absent ras gene mutations in human adrenal cortical neoplasms and pheochromocytomas.  J Urol. 1993;  149 1389-1394
  • 57 Horvath A. et al . A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia.  Nat Genet. 2006;  38 794-800
  • 58 Stratakis CA,, Chrousos GP. Cushing syndrome and disease. In: “Saunder's manual of pediatric practice.” Finberg L (ed). Philadelphia: Saunders 1998: 807-809
  • 59 Stratakis CA, Chrousos GP. Carney complex and the familial lentiginosis syndromes: link to inherited neoplasias and developmental disorders and genetic loci. In: Proceedings of the 6th International Workshop on Multiple Endocrine Neoplasias. Utrect, Holland, June 1997. J Intern Med 1998 243: 573-579
  • 60 Bourdeau I, Stratakis CA. Cyclic AMP-dependent signaling aberrations in macronodular adrenal disease.  Ann N Y Acad Sci. 2002;  968 240-255
  • 61 Fragoso MC. et al . Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene.  J Clin Endocrinol Metab. 2003;  88 2147-2151
  • 62 Stratakis CA. Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony.  Trends Endocrinol Metab. 2003;  14 404-410
  • 63 Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VLW. The complex of myxomas, spotty pigmentation, and endocrine overactivity.  Medicine (Baltimore). 1985;  64 270-283
  • 64 Carney JA, Hruska LS, Beauchamp GD, Gordon H. Dominant inheritance of the complex of myxomas, spotty pigmentation and endocrine overactivity.  Mayo Clin Proc. 1986;  61 165-172
  • 65 Carney JA, Young WF. Primary pigmented nodular adrenocortical disease and its associated conditions.  Endocrinologist. 1992;  2 6-21
  • 66 Atherton DJ, Pitcher DW, Wells RS, Macdonald DM. A syndrome of various cutaneous pigmented lesions, myxoid neurofibromata and atrial myxoma: the NAME syndrome.  Br J Dermatol. 1980;  103 421-429
  • 67 Rhodes AR, Silverman RA, Harrist TJ, Perez-Atayde AR. Mucocutaneous lentigines, cardiomucocutaneous myxomas, and multiple blue nevi: The “LAMB” syndrome.  J Am Acad Dermatol. 1984;  10 72-82
  • 68 Doppman JL, Travis WD, Nieman L, Miller DL, Chrousos GP, Gomez TM. Cushing syndrome due to primary pigmented nodular adrenocortical disease: findings at CT and MR imaging.  Radiology. 1989;  172 415-420
  • 69 Mellinger RC, Smith RW. Studies of the adrenal hyperfunction in 2 patients with atypical Cushing's syndrome.  J Clin Endocrinol Metab. 1955;  16 350-366
  • 70 Kracht J, Tamm J. Bilaterale kleinknotige Adenomatose der Nebennierenrinde bei Cushing-Syndrom [Bilateral small-nodule adenomatosis of the adrenal cortex in Cushing Syndrom].  Virchows Arch. 1960;  333 1-9
  • 71 Levin ME. The development of bilateral adenomatous adrenal hyperplasia in a case of Cushing's syndrome of eighteen years' duration.  Am J Med. 1966;  40 318-324
  • 72 De Moor P, Roels H, Delaere K, Crabbe J. Unusual case of adrenocortical hyperfunction.  J Clin Endocrinol Metab. 1965;  25 612-620
  • 73 Gomez-Muguruza MT, Chrousos GP. Periodic Cushing's syndrome in a short boy: usefulness of the ovine corticotropin releasing hormone test.  J Pediatr. 1989;  115 270-273
  • 74 Sarlis NJ, Papanicolaou DA, Chrousos GP,, Stratakis CA. Paradoxical increase of urinary free cortisol and 17-hydroxy-steroids to dexamethasone during Liddle's test: a diagnostic test for primary pigmented adrenocortical disease. [Abstract P2-76]. In: Proceedings of the 79th Annual Meeting of the Endocrine Society in Minneapolis. MN, Bethesda: Endocrine Society Press 1997: 303
  • 75 Caticha O, Odell WD, Wilson DE, Dowdell LA, Noth RH, Swislocki ALM. Estradiol stimulates cortisol production by adrenal cells in estrogen-dependent primary adrenocortical nodular dysplasia.  J Clin Endocrinol Metab. 1993;  77 494-497
  • 76 Stratakis CA, Carney JA, Lin J-P, Papanicolaou DA, Karl M, Kastner DL, Pras E, Chrousos GP. Carney complex, a familial multiple neoplasia and lentiginosis syndrome: analysis of 11 kindreds and linkage to the short arm of chromosome 2.  J Clin Invest.. 1996;  97 699-705
  • 77 Carney JA. Differences between nonfamilial and familial cardiac myxoma.  Am J Surg Pathol. 1985;  9 53-55
  • 78 Kennedy RH, Flanagan JC, Eagle Jr RC, Carney JA. The Carney complex with ocular signs suggestive of cardiac myxoma.  Am J Ophthalmol. 1991;  111 699-702
  • 79 Ferreiro JA, Carney JA. Myxomas of the external ear and their significance.  Am J Surg Pathol. 1994;  18 274-280
  • 80 Carney JA, Toorkey BC. Myxoid fibroadenoma and allied conditions (myxomatosis) of the breast. A heritable disorder with special associations including cardiac and cutaneous myxomas.  Am J Surg Pathol. 1991;  15 713-721
  • 81 Courcoutsakis NA, Chow CK, Shawker T, Carney JA, Stratakis CA. Breast imaging findings in the complex of myxomas, spotty pigmentation, endocrine veractivity, and schwannomas (Carney complex).  Radiology. 1997;  205 221-227
  • 82 Carney JA, Ferreiro JA. The epithelioid blue nevus. A multicentric familial tumor with important associations, including cardiac myxoma and psammomatous melanotic schwannoma.  Am J Surg Pathol. 1996;  20 259-272
  • 83 Carney JA. Carney complex: the complex of myxomas, spotty pigmentation, endocrine veractivity, and schwannomas.  Semin Dermatol. 1995;  14 90-98
  • 84 Premkumar A, Stratakis CA, Shawker TH, Papanicolaou DA, Chrousos GP. Testicular ultrasound in Carney complex.  J Clin Ultrasound. 1997;  25 211-214
  • 85 Carney JA. Psammomatous melanotic schwannoma. A distinctive, heritable tumor with special associations, including cardiac myxoma and the Cushing syndrome.  Am J Surg Pathol. 1990;  14 206-222
  • 86 Carney JA, Toorkey BC. Ductal adenoma of the breast with tubular futures. A probable component of the complex of myxomas, spotty pigmentation, endocrine overactivity, and schwannomas.  Am J Surg Pathol. 1991;  15 722-731
  • 87 Carney JA, Stratakis CA. Ductal adenoma of the breast [letter].  Am J Surg Pathol. 1996;  20 1154-1155
  • 88 Stratakis CA, Courcoutsakis N, Abati A, Filie A, Doppman JL, Carney JA. et al . Thyroid gland abnormalities in patients with the “syndrome of spotty skin pigmentation, myxomas, and endocrine overactivity” (Carney complex).  J Clin Endocrinol Metab. 1997;  82 2037-2043
  • 89 Stratakis CA, Pras E, Tsigos C, Karl M, Papanicolaou DA, Kastner DL. et al . Genetics of Carney complex: parent of origin effects and putative non-Mendelian features in an autosomal dominant disorder; absence of common defects of the ACTH receptor and RET genes.  Abstract], Pediatr Res. 1995;  37 99A
  • 90 Kirschner LS. et al . Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex.  Nat Genet. 2000;  26 89-92
  • 91 Gunther DF. et al . Cyclical Cushing syndrome presenting in infancy: an early form of primary pigmented nodular adrenocortical disease, or a new entity?.  J Clin Endocrinol Metab. 2004;  89 3173-3182
  • 92 Fragoso MC. et al . Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene.  J Clin Endocrinol Metab. 2003;  88 2147-2151
  • 93 Groussin L. et al . Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease.  J Clin Endocrinol Metab. 2002;  87 4324-4329
  • 94 Kirschner LS. et al . Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex.  Hum Mol Genet. 2000;  9 3037-3046
  • 95 D'Andrea MR. et al . Expression of PDE11A in normal and malignant human tissues.  J Histochem Cytochem. 2005;  53 895-903
  • 96 Yuasa K. et al . Genomic organization of the human phosphodiesterase PDE11A gene. Evolutionary relatedness with other PDEs containing GAF domains.  Eur J Biochem. 2001;  268 168-178
  • 97 Horvath A, Giatzakis C. et al . Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population.  Cancer Res. 2006;  66 11571-11575

Correspondence

C. A. StratakisMD, D.Sc. 

Program on Genetics and Endocrinology

National Institute of Child Health & Human Development

National Institutes of Health

Building 10-CRC

Room 1(East)-3330

10 Center Dr. MSC1103

Bethesda Maryland

20892-1862

USA

Telefon: +1/301/496 46 86/402 19 98

Fax: +1/301/402 05 74

eMail: stratakc@mail.nih.gov