Subscribe to RSS
DOI: 10.1055/s-2007-981526
© Georg Thieme Verlag KG Stuttgart · New York
Inhibition of Chitin Synthase 2 and Antifungal Activity of Lignans from the Stem Bark of Lindera erythrocarpa
Publication History
Received: August 28, 2006
Revised: April 23, 2007
Accepted: April 23, 2007
Publication Date:
31 May 2007 (online)

Abstract
Potent chitin synthase 2 inhibitors, methyllinderone (1), linderone (2) and kanakugiol (3) were isolated from the stem bark of L. erythrocarpa Makino (Lauraceae). These compounds inhibited chitin synthase 2 with IC50 values of 23.3, 21.4 and 23.8 μg/mL, respectively. Methyllinderone (1) and linderone (2) exhibited no inhibitory activities for chitin synthases 1 and 3 from S. cerevisiae, and chitin synthase 1 from Candida albicans up to the concentration of 280 μg/mL, while kanakugiol (3) exhibited very weak activity against chitin synthase 1 of C. albicans with an IC50 of 160 μg/mL. All of the compounds showed moderate to weak antifungal activities against various pathogenic fungi (MIC: 8 - >128 μg/mL) including Cryptococcus neoformans, Aspergillus fumigatus, and Colletotrichum lagenarium. The results indicate that these compounds are specific inhibitors of chitin synthase 2 and can potentially serve as antifungal agents.
References
- 1 Gooday G W. Biosynthesis of the fungal cell wall: Mechanisms and implications. J Gen Microbiol. 1977; 99 1-11.
-
2 Cabib E, Shaw J A, Mol P C, Bowers B, Choi W J. Chitin biosynthesis and morphogenetic processes. In: Brambl R., Marzluf GA, editors
The Mycota. Biochemistry and molecular biology. Berlin; Springer Verlag 1996 Vol. 3: 243-67. - 3 Silverman S J, Sburiati A, Slater M L, Cabib E. Chitin synthase 2 is essential for septum formation and cell division in S. cerevisiae . Proc Natl Acad Sci USA. 1988; 85 4735-9.
- 4 Choi W J, Sburiati A, Cabib E. Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and CAL3 genes. Proc Natl Acad Sci USA. 1994; 91 4727-30.
- 5 Silverman S J. Similar and different domains of chitin synthase 1 and 2 of S. cerevisiae: two isozymes with distinct functions. Yeast. 1989; 5 459-67.
- 6 Mio T, Yabe T, Sudoh M, Satoh Y, Nakajima T, Arisawa M. et al . Role of three chitin synthase genes in the growth of C. albicans . J Bacteriol. 1996; 178 2416-9.
- 7 Hwang E I, Yun B S, Kim Y K, Kwon B M, Kim H G, Lee H B. et al . Phellinsin A, a novel chitin synthase II inhibitor produced by Phellinus sp. PL3. J Antibiot. 2000; 53 903-11.
- 8 Hwang E I, Kwon B M, Lee S H, Kim N R, Kang T H, Kim Y T. et al . Obovatols, new chitin synthase 2 inhibitors of S. cerevisiae from Magnolia obovata . J Antimicrob Chemother. 2002; 49 95-101.
- 9 Park K S, Kang K C, Kim K Y, Jeong P Y, Kim J H, Adams D J. et al . HWY-289, a novel semi-synthetic protoberberine derivative with multiple targets sites in Candida albicans . J Antimicrob Chemother. 2000; 47 513-9.
- 10 Sudoh M, Yamazaki T, Masubuchi K, Taniguchi M, Shimma N, Arizawa M. et al . Identification of a novel inhibitor specific to the fungal chitin synthase. J Biol Chem. 2000; 275 32 901-5.
- 11 Gaughran J P, Lai M H, Kirsch D R, Silverman S J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme chs3 in vitro and in vivo . J Bacteriol. 1994; 176 5857-60.
- 12 Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother. 1991; 35 170-3.
- 13 Liu S Y, Hisada S, Inagaki I. Terpenes of Lindera erythrocarpa . Phytochemistry. 1973; 12 233-5.
- 14 Leong Y W, Harrison L J, Bennett G J, Kadir A A, Connolly J D. A dihydrochalcone from Lindera lucida . Phytochemistry. 1998; 47 891-4.
- 15 Zhang C F, Nakamura N N, Tewtrakul S, Hattori M, Sun Q S, Wang Z T. et al . Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem Pharm Bull. 2002; 50 1195-200.
- 16 Aoyama Y, Konoike T, Kanda A, Naya N, Nakajima M. Total synthesis of human chymase inhibitor methyllinderone and structure-activity relationships of its derivatives. Bioorg Med Chem Lett. 2001; 11 1695-7.
- 17 Kiang A K, Lee H H, Sim K Y. The structure of linderone and methyl-linderone. J Chem Soc 1962: 4338-45.
- 18 Waterman P G, Pootakahm K. Chemical studies on the annonaceae: V. The flavonoids of the fruit of Popowia cauliflora CHIPP. Planta Med. 1979; 35 366-9.
- 19 Oh H M, Choi S K, Lee J M, Lee S K, Kim H Y, Han D C. et al . Cyclopentenediones, inhibitors of farnesyl protein transferase and anti-tumor compounds, isolated from the fruit of Lindera erythrocarpa Makino. Bioorg Med Chem. 2005; 13 6182-7.
- 20 Min B S, Bae K H, Kim Y H, Shimotohno K, Miyashiro H, Hattori M. Inhibitory activities of Korean plants on HIV-1 protease. Nat Prod Sci. 1998; 4 241-4.
-
21 Mcginnis M R, Rinaldi M G. Antifungal drugs: Mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids. In: Victor L, editor
Antibiotics in laboratory medicine. Baltimore; Williams & Wilkins 1986: 223-81. - 22 Sikorski R S, Hieter P. A system of shuttle vectors and yeast strain designed for efficient manipulation of DNA in S. cerevisiae . Genetics. 1989; 122 19-27.
- 23 Choi W J, Santos B, Duran A, Cabib E. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level?. Mol Cell Biol. 1994; 14 7685-94.
- 24 Orlean P. Two chitin synthases in Saccharomyces cerevisiae . J Biol Chem. 1987; 262 5732-9.
Dr. Sung Uk Kim
Division of Biomaterials Science
Korea Research Institute of Bioscience and Biotechnology
Daejon 305-806
Korea
Phone: +82-42-860-4554
Fax: +82-42-861-2675
Email: kimsu@kribb.re.kr