Planta Med 2007; 73(8): 725-730
DOI: 10.1055/s-2007-981540
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Curcumin Decreases Acid Sphingomyelinase Activity in Colon Cancer Caco-2 Cells

Yajun Cheng1 , Agnieszka Kozubek1 , Lena Ohlsson1 , Berit Sternby1 , Rui-Dong Duan1
  • 1Biomedical Centre, B11, Institution of Clinical Sciences, Lund University, Lund, Sweden
Further Information

Publication History

Received: February 12, 2007 Revised: April 18, 2007

Accepted: May 10, 2007

Publication Date:
22 June 2007 (online)

Abstract

Curcumin has been shown to inhibit cell growth and induce apoptosis in colon cancer cells. The metabolism of sphingomyelin has implications in the development of colon cancert. We examined whether curcumin affects the enzymes that hydrolyse sphingomyelin in Caco-2 cells. The cells were cultured in both monolayer and polarized conditions and stimulated with curcumin. The activities of sphingomyelinases were determined. Sphingomyelin and its hydrolytic products were analysed by thin layer chromatography. The changes of acid sphingomyelinase protein were examined by Western blotting. We found that curcumin reduced the hydrolytic capacity of the cells against choline-labelled sphingomyelin, associated with a mild increase of cellular sphingomyelin in the cells. Analysis of the hydrolytic products revealed that the activity was derived from acid sphingomyelinase not from phospholipase D. The curcumin-induced reduction of acid SMase required more than 8 h stimulation. Western blotting showed reduced acid sphingomyelinase protein after curcumin stimulation. The inhibitory effect was more potent in monolayer cells than in polarised cells. No changes of other sphingomyelinases were identified. In the concentrations inhibiting acid sphingomyelinase, curcumin inhibited DNA synthesis and induced cell death. In conclusion, curcumin inhibits acid sphingomyelinase and the effect might be involved in its antiproliferative property against colon cancer cells.

References

  • 1 Sharma R A, Gescher A J, Steward W P. Curcumin: the story so far.  Eur J Cancer. 2005;  41 1955-68.
  • 2 Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E. et al . Chemopreventive and therapeutic effects of curcumin.  Cancer Lett. 2005;  223 181-90.
  • 3 Zeisel S H, Blusztajn J K. Choline and human nutrition.  Annu Rev Nutr. 1994;  14 269-96.
  • 4 Pettus B J, Chalfant C E, Hannun Y A. Ceramide in apoptosis: an overview and current perspectives.  Biochim Biophys Acta. 2002;  1585 114-25.
  • 5 Dillehay D L, Webb S K, Schmelz E -M, Merrill A H. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice.  J Nutr. 1994;  124 615-20.
  • 6 Brasitus T A, Dudeja P K, Dahiya R. Premalignant alterations in the lipid composition and fluidity of colonic brush border membranes of rats administered 1,2 dimethylhydrazine.  J Clin Invest. 1986;  77 831-40.
  • 7 Merchant T E, Kasimos J N, de Graaf P W, Minsky B D, Gierke L W, Glonek T. Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy.  Int J Colorectal Dis. 1991;  6 121-6.
  • 8 Duan R D. Anticancer compounds and sphingolipid metabolism in the colon.  In Vivo. 2005;  19 293-300.
  • 9 Duan R D, Bergman T, Xu N, Wu J, Cheng Y, Duan J. et al . Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family.  J Biol Chem. 2003;  278 38 528-36.
  • 10 Wu J, Cheng Y, Nilsson A, Duan R D. Identification of one exon deletion of intestinal alkaline sphingomyelinase in colon cancer HT-29 cells and a differentiation-related expression of the wild-type enzyme in Caco-2 cells.  Carcinogenesis. 2004;  25 1327-33.
  • 11 Duan R D, Nilsson A. Sphingolipid hydrolyzing enzymes in the gastrointestinal tract.  Methods Enzymol. 2000;  311 276-86.
  • 12 Bligh E H, Dyer W J. A rapid method for total lipid extraction and purification.  Can J Biochem Physiol. 1959;  37 911-8.
  • 13 Wu J, Cheng Y, Jonsson B A, Nilsson A, Duan R D. Acid sphingomyelinase is induced by butyrate but does not initiate the anticancer effect of butyrate in HT29 and HepG2 cells.  J Lipid Res. 2005;  46 1944-52.
  • 14 Liu J J, Wang J Y, Hertervig E, Nilsson A, Duan R D. Sulindac induces apoptosis, inhibits proliferation and activates caspase-3 in Hep G2 cells.  Anticancer Res. 2002;  22 263-6.
  • 15 Liu J J, Nilsson A, Oredsson S, Badmaev V, Zhao W Z, Duan R D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells.  Carcinogenesis. 2002;  23 2087-93.
  • 16 Yamamoto H, Hanada K, Kawasaki K, Nishijima M. Inhibitory effect on curcumin on mammalian phospholipase D activity.  FEBS Lett. 1997;  417 196-8.
  • 17 Earnest D L, Holubec H, Wali R K, Jolley C S, Bissonette M, Bhattacharyya A K. et al . Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid.  Cancer Res. 1994;  54 5071-4.
  • 18 Liu F, Cheng Y, Wu J, Tauschel H D, Duan R D. Ursodeoxycholic acid differentially affects three types of sphingomyelinase in human colon cancer Caco 2 cells.  Cancer Lett. 2006;  235 141-6.
  • 19 Moussavi M, Assi K, Gomez-Munoz A, Salh B. Curcumin mediates ceramide generation via the de novo pathway in colon cancer cells.  Carcinogenesis. 2006;  27 1636-44.
  • 20 Groden J, Joslyn G, Samowitz W, Jones D, Bhattacharyya N, Spirio L. et al . Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene.  Cancer Res. 1995;  55 1531-9.
  • 21 Wang Y J, Pan M H, Cheng A L, Lin L I, Ho Y S, Hsieh C Y. et al . Stability of curcumin in buffer solutions and characterization of its degradation products.  J Pharm Biomed Anal. 1997;  15 1867-76.
  • 22 Ma Z, Shayeganpour A, Brocks D R, Lavasanifar A, Samuel J. High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin.  Biomed Chromatogr. 2007;  21 546-52.
  • 23 Levade T, Jaffrézou J -P. Signalling sphingomyelinase:which, where, how and why?.  Biochim Biophys Acta. 1999;  1438 1-17.
  • 24 Futerman A H, Hannun Y A. The complex life of simple sphingolipids.  EMBO Rep. 2004;  5 777-82.
  • 25 Kirschnek S, Paris F, Weller M, Grassme H, Ferlinz K, Riehle A. et al . CD95-mediated apoptosis in vivo involves acid sphingomyelinase.  J Biol Chem. 2000;  275 27 316-23.
  • 26 Andrieu N, Salvayre R, Levade T. Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts.  Biochem J. 1994;  303 341-5.
  • 27 Bezombes C, Segui B, Cuvillier O, Bruno A P, Uro-Coste E, Gouaze V. et al . Lysosomal sphingomyelinase is not solicited for apoptosis signaling.  Faseb J. 2001;  15 297-9.
  • 28 Cheng Y, Ohlsson L, Duan R D. Psyllium and fat in diets differentially affect the activities and expressions of colonic sphingomyelinases and caspase in mice.  Br J Nutr. 2004;  91 715-23.
  • 29 Andersson D, Liu J J, Nilsson A, Duan R D. Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase.  Anticancer Res. 2003;  23 3317-22.
  • 30 Chatelut M, Leruth M, Harzer K, Dagan A, Marchesini S, Gatt S. et al . Natural ceramide is unable to escape the lysosome, in contrast to a fluorescent analogue.  FEBS Lett. 1998;  426 102-6.
  • 31 Moschetta A, vanBerge-Henegouwen G P, Portincasa P, Palasciano G, Groen A K, van Erpecum K J. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts.  J Lipid Res. 2000;  41 916-24.
  • 32 Koumanov K S, Quinn P J, Bereziat G, Wolf C. Cholesterol relieves the inhibitory effect of sphingomyelin on type II secretory phospholipase A2.  Biochem J. 1998;  336 625-30.
  • 33 Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno N H, Watanabe T. et al . Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1.  Cancer Res. 2003;  63 1706-11.

Rui-Dong Duan, MD, PhD

Gastroenterology Lab

Biomedical Centre B11

Institution of Clinical Sciences

Lund University

22184, Lund

Sweden

Phone: +46-46-222-0709

Fax: +46-46-137-277

Email: rui-dong.duan@med.lu.se