Planta Med 2007; 73(8): 782-786
DOI: 10.1055/s-2007-981551
Natural Product Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Inhibitory Constituents of Euscaphis japonica on Lipopolysaccharide-Induced Nitric Oxide Production in BV2 Microglia

Mi Kyeong Lee1 , Hee Young Jeon1 , Ki Yong Lee1 , Seung Hyun Kim1 , Choong Je Ma1 , Sang Hyun Sung1 , Heum-Sook Lee2 , Mi Jung Park3 , Young Choong Kim1
  • 1College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Korea
  • 2Department of Food Science and Technology, Seoul National University of Technology, Seoul, Korea
  • 3Department of Visual Optics, Seoul National University of Technology, Seoul, Korea
Further Information

Publication History

Received: February 1, 2007 Revised: May 17, 2007

Accepted: May 21, 2007

Publication Date:
05 July 2007 (online)

Abstract

Bioactivity-guided fractionation of the methanolic extract of the aerial parts of Euscaphis japonica (Tunb.) Kantiz (Staphyleaceae), afforded a new compound, p-coumaroyl-D-malic acid 1-methyl ester (1), together with twelve known compounds, 3,7-dihydro-5-octanolide (2), blumenol A (3), megastigmane (4), gallic acid (5), stenophyllin H1 (6), methyl 5,7-dihydroxyoctanoate (7), trans-phytol (8), α-tocopherol (9), kaempferol (10), kaempferol 3-O-β-D-glucopyranoside (11), quercetin (12) and quercetin 3-O-β-D-glucopyranoside (13). Among them, compounds 1 - 5 and 8 - 13 significantly inhibited lipopolysacchride-induced nitric oxide production in murine BV2 microglial cells. Especially, compounds 5, 8, 10 and 12 exerted potent inhibitory activity comparable to that of NAME, used as positive control.

References

  • 1 Bredt D S, Snyder S H. Nitric oxide: a physiological messenger molecule.  Annu Rev Biochem. 1994;  63 175-95.
  • 2 Iadecola C, Delligrino D A, Moskowitz M A, Lassen N A. Nitric oxide synthase inhibition and cerebrovascular regulation.  J Cereb Blood Flow Metab. 1994;  14 175-92.
  • 3 Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development.  Brain Res Brain Res Rev. 2000;  32 476-509.
  • 4 Bolanos J P, Almeida A, Stewart V, Peuchen S, Land J M, Clark J B. et al . Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases.  J Neurochem. 1997;  68 2227-40.
  • 5 Beckman J S, Crow J P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation.  Biochem Soc Trans. 1993;  21 330-4.
  • 6 Felts P A, Woolstone A M, Fernando H B, Asquith S, Gregson N A, Mizzi O J. et al . Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide.  Brain. 2005;  128 1649-66.
  • 7 Ischiropoulos H, Beckman J S. Oxidative stress and nitration in neurodegeneration: Cause, effect, or association.  J Clin Invest. 2003;  111 63-9.
  • 8 Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C. et al . Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.  J Neurosci. 2002;  22 763-71.
  • 9 Moncada S, Higgs E A. Molecular mechanisms and therapeutic strategies related to nitric oxide.  FASEB J. 1995;  9 1319-30.
  • 10 Ishikura N. Flavonol glucosides of Euscaphis japonica .  Phytochemistry. 1971;  10 3332-3.
  • 11 Konishi T, Otani Y, Kiyosawa S, Fujiwara Y. Constituents of the capsules of Euscaphis japonica (Thunb.) Kantiz.  Chem Pharm Bull. 1996;  44 863-4.
  • 12 Takeda Y, Okada Y, Masuda T, Hirata E, Shinzato T, Takushi A. et al . New megastigmane and tetraketide from the leaves of Euscaphis japonica .  Chem Pharm Bull. 2000;  48 752-4.
  • 13 Kim S H, Sung S H, Choi S Y, Chung Y K, Kim J, Kim Y C. Idesolide: a new spiro compound from Idesia polycarpa .  Org Lett. 2005;  7 3275-7.
  • 14 Da Cunha F M, Duma D, Assreuy J, Buzzi F C, Niero R, Campos M M. et al . Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties.  Free Radic Res. 2004;  38 241-53.
  • 15 Lu Y, Foo L Y. The polyphenol constituents of grape pomace.  Food Chem. 1999;  65 1-8.
  • 16 Hahn R, Nahrstedt A. High content of hydroxycinnamic acids esterified with (+)-D-malic acid in the upper parts of Fumaria officinalis .  Planta Med. 1993;  59 189-90.
  • 17 Hahn R, Nahrstedt A. Hydroxycinamic acid derivatives, caffeoylmalic and new caffeoylaldonic acid esters, from Chelidonium majus .  Planta Med. 1993;  59 71-5.
  • 18 Mori Y, Kageyama H, Suzuki M. Synthesis of (-)-tarchonanthuslactone, a syn-1,3-polyol-derived unsaturated lactone.  Chem Pharm Bull. 1990;  38 2574-6.
  • 19 Gonzalez A G, Guillermo J A, Ravelo A G, Jimenez I A. 4,5-dihydroblumenol A, new nor-isoprenoid from Perrottetia multiflora .  J Nat Prod. 1994;  57 400-2.
  • 20 Tian G, Zhang T, Yang F, Ito Y. Separation of gallic acid form Cornus officinalis Sieb. et Zucc by high-speed counter-current chromatography.  J Chromatogr. 2000;  886 309-12.
  • 21 Tanaka N, Tanaka T, Fujioka T, Fujii H, Mihashi K, Shimomura K. et al . An ellagic compound and iridoids form Cornus capitata root cultures.  Phytochemistry. 2001;  57 1287-91.
  • 22 Stritzke K, Schulz S, Nishida R. Absolute configuration and synthesis of β- and α-lactones represent in the pheromone system of the giant white butterfly Idea lueconone .  Eur J Org Chem. 2002;  2002 3884-92.
  • 23 Crownstein A, Burton G W, Hughes L, Ingold K U. Chiral effects on the 13C resonances of α-tocopherol and related compounds - a novel illustration of Newman's ”Rule of six.”  J Org Chem. 1989;  54 560-9.
  • 24 Arawal P K, Bansal M C, Foo L Y, Markham K R, Porter L J, Thakur R S. Carbon-13 NMR of flavonoid. St. Louis; Elsevier 1989: 152-344.
  • 25 Kim H Y, Moon B H, Lee H J, Choi D H. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity.  J Ethnopharmacol. 2004;  93 227-30.
  • 26 Kim H P, Son K H, Chang H W, Kang S S. Anti-inflammatory plant flavonoids and cellular action mechanisms.  J Pharmacol Sci. 2004;  96 229-45.
  • 27 Chen Y C, Shen S C, Chen L G, Lee T J, Yang L L. Wogonin, baicalin and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expression induced by nitric oxide synthase inhibitors and lipopolysaccharide.  Biochem Pharmacol. 2001;  61 1417-27.
  • 28 Lee M H, Kim J Y, Ryu J H. Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of IκB-α degradation in activated microglial cells.  Biol Pharm Bull. 2005;  28 2253-57.
  • 29 Chen Y C, Shen S C, Lee W R, Hou W C, Yang L L, Lee T J. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expression by rutin, quercetin, and quercetin pentacetate in RAW 264.7 macrophages.  J Cell Biochem. 2001;  82 537-48.
  • 30 Raso G M, Meli R, Di Carlo G, Pacilio M, Di Carlo R. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A. 1.  Life Sci. 2001;  68 921-31.
  • 31 Fang S H, Rao Y K, Tzeng Y M. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/INF-gamma-activated murine macrophages.  Bioorg Med Chem. 2005;  13 2381-8.

Prof. Young Choong Kim

College of Pharmacy and Research Institute of Pharmaceutical Science

Seoul National University

San 56-1

Sillim-Dong

Gwanak-Gu

Seoul 151-742

Korea

Phone: +82-2-880-7842

Fax: +82-2-888-2933

Email: youngkim@snu.ac.kr