Synlett 2007(11): 1733-1735  
DOI: 10.1055/s-2007-982532
LETTER
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Selective 5′-O-Trityl Protection of Inosine Derivatives

Elena Casanovaa,b, María-Jesús Pérez-Péreza, C. Oliver Kappe*b
a Instituto de Química Médica (C.S.I.C.), Juan de la Cierva, 3, 28006 Madrid, Spain
b Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, 8010 Graz, Austria
Fax: +43(316)3809840; e-Mail: oliver.kappe@uni-graz.at;
Further Information

Publication History

Received 12 March 2007
Publication Date:
25 June 2007 (online)

Abstract

The efficient microwave-assisted synthesis of 5′-O-trityl inosine derivatives is described. The reported protocol allows the protection of inosine derivatives in significantly higher yields and shorter reaction times than the standard thermal conditions. This procedure is particularly suitable for modified inosines where the 5′-OH is sterically hindered (i.e. 8-bromoinosine).

    References and Notes

  • 1 Muramatsu N. Takenishi T. J. Org. Chem.  1965,  30:  3211 
  • 2 Hampton A. Nichol AW. Biochemistry  1966,  5:  2076 
  • 3 Green R. Szostak JW. Benner SA. Rich A. Usman N. Nucleic Acids Res.  1991,  19:  4161 
  • 4 Matulic-Adamic J. Beigelman L. Synth. Commun.  2000,  30:  3963 
  • 5 Liekens S. Hernández AI. Ribatti D. De Clercq E. Camarasa MJ. Pérez-Pérez MJ. Balzarini J. J. Biol. Chem.  2004,  279:  29598 
  • 6 Pankiewicz KW. Krzeminski J. Ciszewski LA. Ren WY. Watanabe KA. J. Org. Chem.  1992,  57:  553 
  • 7 Takamatsu S. Maruyama T. Katayama S. Hirose N. Izawa K. Tetrahedron Lett.  2001,  42:  2321 
  • 8 Casanova E. Hernández AI. Priego EM. Liekens S. Camarasa MJ. Balzarini J. Pérez-Pérez MJ. J. Med. Chem.  2006,  49:  5562 
  • 9 Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 10 This paper mostly reports on the tritylation reaction in the presence of DABCO in molten TBAB. Attempted microwave irradiation produces low yields and the nucleobase is lost. See: Khalafi-Nezhad A. Moktari B. Tetrahedron Lett.  2004,  45:  6737 
  • 11 Hyde RM. Broom AD. Buckheit RW. J. Med. Chem.  2003,  46:  1878 
  • 12 Watanabe KA, Pankiewicz KW, Krzeminski J, and Nawrot B. inventors; WO  9211276.  ; Chem. Abstr. 1993, 118, 7325
  • 14 Fukuoka M. Shuto S. Minakawa N. Ueno Y. Matsuda A. J. Org. Chem.  2000,  65:  5238 
  • 15 Holmes RE. Robins RK. J. Am. Chem. Soc.  1964,  86:  1242 
13

Spectroscopic data for N 1-benzylinosine (4): 1H NMR (360 MHz, DMSO-d 6): δ = 3.60 (m, 2 H, H-5′), 3.93 (m, 1 H, H-4′), 4.11 (m, 1 H, H-3′), 4.48 (m, 1 H, H-2′), 5.05 (t, J = 5.7 Hz, 1 H, OH), 5.21-5.23 (m, 3 H, CH2, OH), 5.49 (m, 1 H, OH), 5.85 (d, J = 5.8 Hz, 1 H, H-1′), 7.24-7.36 (m, 5 H, Ph), 8.36, 8.62 (s, 2 H, H-2, H-8). MS (ES, positive mode): m/z = 358 [M + 1]+.

16

Spectroscopic data for 8-bromo-5′-O-tritylinosine (8): white solid, mp 175-178 °C (MeOH). 1H NMR (300 MHz, DMSO-d 6): δ = 3.16 (m, 2 H, H-5′), 4.05 (m, 1 H, H-4′), 4.42 (m, 1 H, H-3′), 5.06 (m, 1 H, H-2′), 5.22 (d, J = 4.8 Hz, 1 H, OH), 5.56 (d, J = 5.7 Hz, 1 H, OH), 5.83 (d, J = 4.2 Hz, 1 H, H-1′), 7.19-7.30 (m, 15 H, Ph), 7.88 (s, 0.66 H, H-2), 7.93 (s, 0.33 H, H-2), 12.56 (br s, 1 H, NH). MS (ES, positive mode): m/z = 589 [M + 1]+.