Synlett 2007(10): 1591-1594  
DOI: 10.1055/s-2007-982543
LETTER
© Georg Thieme Verlag Stuttgart · New York

Cu-FeCl3-Mediated One-Pot Multicomponent Reaction Leading to N-Aryl- and N-Alkyltriazoles in Water [1]

Biswajit Saha, Sunil Sharma, Devesh Sawant, Bijoy Kundu*
Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow 226001, India
Fax: +91(522)2623405; e-Mail: bijoy_kundu@yahoo.com;
Further Information

Publication History

Received 4 December 2006
Publication Date:
06 June 2007 (online)

Abstract

A concise, convenient and mild route for the one-pot syntheses of N-aryl- and N-alkyltriazoles in water is reported. The methodology involves the three-component reaction comprising phenylacetylene, sodium azide and aryl/alkyl halide catalyzed by Cu(I) species generated in situ by a redox reaction between FeCl3 and copper metal. Prominent features of our methodology are in­corporation of aryl fluoride to generate N-aryltriazoles, which are rather scarcely reported, use of water as reaction medium, and avoidance of hazardous aryl azide as a reactant.

1

CDRI communication number 7186.

    References and Notes

  • 2a Brase S. Gil C. Knepper K. Bioorg. Med. Chem. Lett.  2002,  10:  2415 
  • 2b Balaban AT. Oniciu DC. Katritzky AR. Chem. Rev.  2004,  104:  2777 
  • 2c Costantino L. Barlocoo D. Curr. Med. Chem.  2006,  13:  1 
  • 3a Kundu B. Sawant D. Partani P. Kesarwani AP. J. Org. Chem.  2005,  70:  4889 
  • 3b Duggineni S. Sawant D. Saha B. Kundu B. Tetrahedron  2006,  62:  3228 
  • 3c Sawant D. Kumar R. Maulik P. Kundu B. Org. Lett.  2006,  8:  1525 
  • 3d Saha B. Kumar R. Maulik P. Kundu B. Tetrahedron Lett.  2006,  47:  2765 
  • 4a Buckle DR. Rockell CJM. J. Chem. Soc., Perkin Trans. 1  1982,  627 
  • 4b Buckle DR. Outred DJ. Rockell CJM. Smith H. Spicer BA. J. Med. Chem.  1983,  26:  251 
  • 4c Buckle DR. Outred DJ. Rockell CJM. Smith H. Spicer BA. J. Med. Chem.  1986,  29:  2262 
  • 4d Genin MJ. Allwine DA. Anderson DJ. Barbachyn MR. Emmert DE. Garmon SA. Graber DR. Grega KC. Hester JB. Hutchinson DK. Morris J. Reischer RJ. Ford CW. Zurenko GE. Hamel JC. Schaadt RD. Stapert D. Yagi BH. J. Med. Chem.  2000,  43:  953 
  • 4e Alvarez R. Velazquez S. San-Felix A. Aquaro S. De Clercq E. Perno CF. Karlsson A. Balzarini J. Camarasa MJ. J. Med. Chem.  1994,  37:  4185 
  • 5a Kolb HC. Sharpless KB. Drug Discovery Today  2003,  8:  1128 
  • 5b Horne WS. Stout CD. Ghadiri MR. J. Am. Chem. Soc.  2003,  125:  9372 
  • 5c Horne WS. Yadav MK. Stout CD. Ghadiri MR. J. Am. Chem. Soc.  2004,  126:  15366 
  • 6 Brockunier LL. Parmee ER. Ok HO. Candelore MR. Cascieri MA. Colwell LF. Deng L. Feeney WP. Forrest MJ. Hom GJ. MacIntyre DE. Tota L. Wyvratt MJ. Fisher MH. Weber AE. Bioorg. Med. Chem. Lett.  2000,  10:  2111 
  • 7 Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry   Padwa A. Wiley; New York: 1984. 
  • 8a Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 8b Tornoe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 9a Horne WS. Yadav MK. Stout CD. Ghadiri MR. J. Am. Chem. Soc.  2004,  126:  15366 
  • 9b Manetsch R. Krasinski A. Radic Z. Raushel J. Taylor P. Sharpless KB. Kolb HC. J. Am. Chem. Soc.  2004,  126:  12809 
  • 9c Zhou Z. Fahrni CJ. J. Am. Chem. Soc.  2004,  126:  8862 
  • 9d Punna S. Kuzelka J. Wang Q. Finn MG. Angew. Chem. Int. Ed.  2005,  44:  2215 
  • 10 Bock VD. Hiemstra H. Maarseveen JHV. Eur. J. Org. Chem.  2006,  51 
  • 11a Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  114:  2708 
  • 11b Chan TR. Robert H. Sharpless KB. Fokin VV. Org. Lett.  2004,  6:  2653 
  • 11c Feldman AK. Colasson B. Fokin VV. Org. Lett.  2004,  6:  3897 
  • 12 Prasad A. Wim D. Fokin VV. Eycken EV. Org. Lett.  2004,  6:  4223 
  • 13 Chan TR. Hilgraf R. Sharpless KB. Fokin VV. Org. Lett.  2004,  6:  2853 
  • 14a Atkins PW. Physical Chemistry   6Rev ed.:  Oxford University Press; Oxford: 1998.  p.243-278  
  • 14b Dekock RLJ. Chem. Educ.  1996,  73:  955 
  • 14c Craw DR. Principles and Application of Electrochemistry   Blackie; London: 1994. 
  • 15a Prasad A. Wim D. Fokin VV. Eycken EV. Org. Lett.  2004,  6:  4223 
  • 15b Zhao YB. Yan ZY. Liang YM. Tetrahedron Lett.  2006,  47:  1545 
  • 15c Maksikova AV. Serebryakova ES. Tikhonova LG. Vereshagin LI. Chem. Heterocycl. Compd. (Engl. Trans.)  1980,  1284 
  • 16 Saha B. Sharma S. Sawant D. Kundu B. Tetrahedron Lett.  2007,  48:  1379 
  • 17 Rideout DC. Breslow RL. J. Am. Chem. Soc.  1980,  102:  7816 
  • 18 Yan ZY. Zhao YB. Fan MJ. Liu VM. Liang YM. Tetrahedron  2005,  61:  9331 
1

CDRI communication number 7186.

19

General Procedure for the Preparation of 1-(2-Nitrophenyl)-4-phenyl-1 H -[1,2,3]triazole ( 3a): 1-Fluoro-2-nitrobenzene (2.0 mmol), phenylacetylene (2.2 mmol), sodium azide (2.2 mmol) and NaHCO3 (2.2 mmol) were suspended in H2O (10 mL) in a 50-mL round-bottomed flask equipped with a small magnetic stirring bar. To this was added copper powder (100 mg) and ferric chloride (100 mg). The mixture was then heated to reflux for 7 h. The reaction mixture was cooled and EtOAc (50 mL) was added. The suspension was passed through a bed of celite and the filtrate was partitioned in a separating funnel. The organic layer was separated, dried (Na2SO4) and concentrated to afford a residue, which was purified by silica gel chromatography using hexane-EtOAc (70:30) as eluent to afford 3a as a yellow solid. Yield: 72%; mp 144-145 °C. IR (KBr): 1604, 1534, 1351 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.12 (dd, J = 1.2, 7.9 Hz, 1 H, ArH), 8.09 (s, 1 H, ArH), 7.91-7.94 (m, 2 H, ArH), 7.81-7.84 (m, 1 H, ArH), 7.69-7.76 (m, 2 H, ArH), 7.46-7.51 (m, 2 H, ArH), 7.40-7.43 (m, 1 H, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 148.54, 144.60, 134.01, 130.91, 130.41, 129.96, 129.11, 128.81, 128.03, 126.15, 125.73, 121.18. MS (ES+): m/z = 267.1 [M+ + 1]. Anal. Calcd for C14H10N4O2: C, 63.15; H, 3.79; N, 21.04. Found: C, 63.26; H, 3.57; N, 21.40.
1-(4-fluoro-2-nitrophenyl)-4-phenyl-1H-[1,2,3]triazole (3b): Yield: 75%; mp 178-180 °C. IR (KBr): 1601, 1523, 1347 cm-1. 1H NMR (300 MHz, DMSO): δ = 9.14 (s, 1 H, ArH), 8.28 (dd, J = 2.4, 8.0 Hz, 1 H, ArH), 8.04-8.08 (m, 1 H, ArH), 7.89-7.94 (m, 3 H, ArH), 7.51 (t, J = 7.2 Hz, 2 H, ArH), 7.27-7.42 (m, 1 H, ArH), 13C NMR (75.5 MHz, DMSO): δ = 147.08, 144.75, 129.78, 129.60, 129.03, 128.43, 125.79, 125.37, 122.91, 121.60, 121.30, 113.80, 113.42. MS (ES+): m/z = 285.2.