Subscribe to RSS
DOI: 10.1055/s-2007-982552
Organocatalytic Enantioselective Synthesis of Secondary α-Hydroxycarboxylates
Publication History
Publication Date:
06 June 2007 (online)
Abstract
Enantioenriched secondary α-hydroxycarboxylates have been synthesized in good yields and enantioselectivities by using the cross-aldol reaction of ketones and ethyl glyoxylate with a proline-derived dipeptide as the catalyst.
Key words
aldol reaction - enantioselectivity - organocatalysis - ethyl glyoxylate - ketones - α-hydroxycarboxylate
- 1 For a review, see:
α-Hydroxy Acids in Enantioselective Synthesis
Copolla GM.Schuster HF. Wiley-VCH; Weinheim: 1997. -
2a
Leblond C.Wang J.Liu J.Andrews AT.Sun Y.-K. J. Am. Chem. Soc. 1999, 121: 4920 -
2b
Carpentier J.-F.Mortreux A. Tetrahedron: Asymmetry 1997, 8: 1083 -
2c
Brown HC.Cho BT.Park WS. J. Org. Chem. 1986, 51: 3396 -
2d
Wang C.-J.Sun X.Zhang X. Synlett 2006, 1169 - 3
Xiang YB.Snow K.Belley M. J. Org. Chem. 1993, 58: 993 -
4a
Zhu D.Stearns JE.Ramirez M.Hua L. Tetrahedron 2006, 62: 4535 -
4b
Ishihara K.Nakajima N.Yamaguchi H.Hamada H.Uchimura Y.-S. J. Mol. Catal. B: Enzym. 2001, 15: 101 -
4c
Nakamura K.Inoue K.Ushio K.Oka S.Ohno A. J. Org. Chem. 1988, 53: 2589 -
5a
Johnson JS.Evans DA. Acc. Chem. Res. 2000, 33: 325 -
5b
Lalic G.Aloise AD.Shair MD. J. Am. Chem. Soc. 2003, 125: 2852 -
5c
Kudyba I.Raczko J.Jurczak J. J. Org. Chem. 2004, 69: 2844 -
6a
Kalaritis P.Regenye RW.Partridge JJ.Ciffen DL. J. Org, Chem. 1990, 55: 812 -
6b
Huang S.-H.Tsai S.-W. J. Mol. Catal. B: Enzym. 2004, 28: 65 -
6c
Liljeblad A.Kanerva LT. Tetrahedron: Asymmetry 1999, 10: 4405 -
7a
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 -
7b
Notz W.List B. J. Am. Chem. Soc. 2000, 122: 7386 -
7c
List B.Pojarliev P.Castello C. Org. Lett. 2001, 3: 5773 -
7d
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 -
7e
Pidathala C.Hoang L.Vignola N.List B. Angew. Chem. Int. Ed. 2003, 42: 2785 -
7f
List B. Synlett 2001, 1675 -
7g
Martin HJ.List B. Synlett 2003, 1901 - For reviews, see:
-
7h
List B. Tetrahedron 2002, 58: 5573 -
7i
List B. Acc. Chem. Res. 2004, 37: 548 -
7j
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 - For selected recent examples, see:
-
8a
Tang Z.Jiang F.Yu L.-T.Cui X.Gong L.-Z.Mi A.-Q.Jiang Y.-Z.Wu Y.-D. J. Am. Chem. Soc. 2003, 125: 5262 -
8b
Tang Z.Yang Z.-H.Chen X.-H.Cun L.-F.Mi A.-Q.Jiang Y.-Z.Gong L.-Z. J. Am. Chem. Soc. 2005, 127: 9285 -
8c
Samanta S.Liu J.Dodda R.Zhao C.-G. Org. Lett. 2005, 7: 5321 -
8d
Luppi G.Cozzi PG.Monari M.Kaptein B.Broxterman QB.Tomanisi C. J. Org, Chem. 2005, 70: 7418 -
8e
Wang W.Li H.Wang J. Tetrahedron Lett. 2005, 46: 5077 -
8f
Zheng J.-F.Li Y.-X.Zhang S.-Q.Yang S.-T.Wang X.-M.Wang Y.-Z.Bai J.Liu F.-A. Tetrahedron Lett. 2006, 47: 7793 -
8g
Chen J.-R.Lu H.-H.Li X.-Y.Cheng L.Wan J.Xiao W.-J. Org. Lett. 2005, 7: 4543 -
8h
Cobb AJA.Shaw DM.Longbottom DA.Gold JB.Ley SV. Org. Biomol. Chem. 2005, 3: 84 - 9
Tang Z.Cun L.-F.Cui XMiA.-Q.Jiang Y.-Z.Gong L.-Z. Org. Lett. 2006, 8: 1263 - For some isolated examples, see:
-
10a
Tokuda O.Kano T.Gao W.-G.Ikemoto T.Maruoka K. Org. Lett. 2005, 7: 5103 -
10b
Suri JT.Mitsumori S.Albertshofer K.Tanaka F.Barbas CF. J. Org. Chem. 2006, 71: 3822 -
10c
Cardova A.Zou W.Dziedzic P.Ibrahem I.Reyes E.Xu Y. Chem. Eur. J. 2006, 12: 5383 -
11a
Samanta S.Zhao C.-G. Tetrahedron Lett. 2006, 47: 3383 -
11b
Samanta S.Zhao C.-G. J. Am. Chem. Soc. 2006, 128: 7224 -
11c
Dodda R.Zhao C.-G. Org. Lett. 2006, 8: 4991 -
11d
Shen Z.Li B.Wang L.Zhang Y. Tetrahedron Lett. 2005, 46: 8785 -
11e
Guizzetti S.Benaglia M.Pignataro L.Puglisi A. Tetrahedron: Asymmetry 2006, 17: 2754 -
11f
Wu Y.Zhang Y.Yu M.Zhao G.Wang S. Org. Lett. 2006, 8: 4417 -
11g
Raj M. .Ginotra SK.Singh VK. Org. Lett. 2006, 8: 4097 -
12a
Yoshinori I.Shuji T.Takeshi K. J. Antibiotics 1986, 39: 1378 -
12b
Tang Z.Yang Z.-H.Cun L.-F.Gong L.-Z.Mi A.-Q.Jiang Y.-Z. Org. Lett. 2004, 6: 2285 - 13
Fache F.Piva O. Tetrahedron: Asymmetry 2003, 14: 139 - 14
Gondi VB.Gravel M.Rawal VH. Org. Lett. 2005, 7: 5657 - 16
Tsuboi S.Nishiyama E.Furutani H.Utaka M.Takeda A. J. Org. Chem. 1987, 52: 1359 - 17
Matsubara R.Nakamura Y.Kobayashi S. Angew. Chem. Int. Ed. 2004, 43: 3258
References and Notes
General Experimental Procedure
To a stirred solution of ethyl glyoxylate (51.0 mg, 0.5 mmol) and the ketone (0.25 mL) in CHCl3 (0.25 mL) was added catalyst 5 (13.6 mg, 0.05 mmol) at -10 °C. The reaction mixture was stirred at this temperature for 24-72 h. The solvent was then evaporated under vacuum and the residue was purified by flash chromatography (EtOAc-hexane, 1:2) over silica gel to furnish the desired secondary α-hydroxy-carboxylate as a pure compound. 1H NMR and 13C NMR data of new compounds are collected below.
Compound 5: 1H NMR (500 MHz, CDCl3): δ = 0.83 (t, J = 7.5 Hz, 6 H), 1.90-1.92 (m, 1 H), 1.99 (s, 3 H), 2.06-2.11 (m, 2 H), 2.96 (d, J = 3.0 Hz, 2 H), 3.79 (t, J = 8.0 Hz, 1 H), 4.12 (q, J = 4.5 Hz, 1 H), 5.08 (d, J = 2.5 Hz, 1 H), 8.10 (d, J = 9.5 Hz, 1 H, CONH) ppm. 13C NMR (125 MHz, CDCl3): δ = 18.3, 19.8, 21.7, 31.1, 37.6, 53.0, 57.2, 59.9, 76.6, 170.8, 173.5, 173.7 ppm.
Compound 8: 1H NMR (500 MHz, CDCl3): δ = 0.72-0.98 (m, 6 H), 2.00-2.40 (m, 3 H), 3.42-3.79 (m, 3 H), 4.38-4.61 (m, 3 H), 5.00-5.33 (m, 4 H), 7.20-7.52 (m, 11 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 17.8, 19.2, 31.4, 37.3 (40.0), 54.8 (56.0), 57.7 (57.3), 59.3 (59.7), 67.2, 67.7, 70.1 (69.5), 128.1 (2 C), 128.3 (2 C), 128.6 (2 C), 128.7 (2 C), 128.8 (2 C), 135.7, 136.6, 156.4 (155.6), 171.9, 172.7 (171.6) ppm.
Compound 11c: 1H NMR (500 MHz, CDCl3): δ = 0.91 (t, J = 8.3 Hz, 3 H), 1.28 (t, J = 7.0 Hz, 3 H), 1.20 (q, J = 7.3 Hz, 2 H), 2.43 (t, J = 7.5 Hz, 2 H), 2.87 (dd, J = 17.5, 6.5 Hz, 1 H), 2.94 (dd, J = 17.5, 4.0 Hz, 1 H), 4.21-4.30 (m, 2 H), 4.68 (dd, J = 6.5, 4.0 Hz, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 13.8, 14.3, 17.2, 45.5, 46.1, 62.1, 67.3, 174.0, 208.8 ppm.
Compound 11d: 1H NMR (500 MHz, CDCl3): δ = 0.88 (d, J = 7.0 Hz, 6 H), 1.24 (t, J = 7.3 Hz, 3 H), 2.09-2.13 (m, 1 H), 2.28 (d, J = 7.0 Hz, 2 H), 2.83 (dd, J = 17.5, 6.0 Hz, 1 H), 2.86 (dd, J = 17.5, 4.0 Hz, 1 H), 3.19 (br s, 1 H), 4.18-4.22 (m, 2 H), 4.42 (m, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.3, 22.7 (2 C), 24.8, 46.6, 52.5, 62.1, 67.2, 174.0, 208.5 ppm.
Compound 11e (diastereomeric mixture), major isomer: 1H NMR (500 MHz, CDCl3): δ = 1.30 (t, J = 7.5 Hz, 3 H), 2.25, (s, 3 H), 3.56 (s, 3 H), 3.94 (d, J = 2.5 Hz, 1 H), 4.20-4.4.28 (m, 2 H), 4.58 (d, J = 2.5 Hz, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.3, 27.4, 60.2, 62.6, 72.3, 89.0, 171.6, 208.5 ppm.
Compound 11e (diastereomeric mixture), minor isomer: 1H NMR (500 MHz, CDCl3): δ = 1.33 (t, J = 7.5 Hz, 3 H), 2.29 (s, 3 H), 3.44 (s, 3 H), 3.95 (d, J = 2.5 Hz, 1 H), 4.28-4.30 (m, 2 H), 4.50 (d, J = 2.0 Hz, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.5, 27.5, 59.9, 62.4, 72.1, 87.7, 171.9, 209.9 ppm.
Compound 11h (diastereomeric mixture), major isomer: 1H NMR (500 MHz, CDCl3): δ = 1.26 (t, J = 7.0 Hz, 3H ), 2.37 (dt, J = 15.0, 2.0 Hz, 1 H), 2.56-2.63 (m, 1 H), 3.10-3.16 (m, 2 H), 3.70 (td, J = 11.5, 3.0 Hz, 1 H), 3.83 (t, J = 11.0 Hz, 1 H), 4.02 (m, 1 H), 4.18-4.30 (m, 4 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.3, 42.5, 54.0, 62.3, 68.0, 68.1, 70.0, 173.1, 205.9 ppm.
Compound 11h (diastereomeric mixture), minor isomer: 1H NMR (500 MHz, CDCl3): δ = 1.27 (t, J = 7.0 Hz, 3 H), 2.47 (dt, J = 15.0, 3.5 Hz, 1 H), 2.56-2.63 (m, 1 H), 2.85-2.98 (m, 2 H), 3.77 (td, J = 10.5, 4.0 Hz, 1 H), 3.89 (t, J = 9.5 Hz, 1 H), 4.03-4.18 (m, 1 H), 4.12-4.30 (m, 3 H), 4.65 (d, J = 3.5 Hz, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.4, 42.5, 54.7, 62.4, 67.5, 68.2, 68.3, 173.4, 205.5 ppm.
Compound 11i: 1H NMR (500 MHz, CDCl3): δ = 1.28 (t, J = 7.0 Hz, 3 H), 2.64-2.78 (m, 2 H), 2.89-3.10 (m, 3 H), 3.13 (br s, 1 H), 3.18-3.30 (m, 2 H), 4.13 (m, 1 H), 4.25 (q, J = 7.2 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.3, 29.9, 32.6, 44.4, 56.0, 62.2, 71.0, 172.9, 208.0 ppm.