Abstract
A variety of oxazoles can efficiently be prepared, in a single step and in good yield, from primary amides and 1,2-dihaloalkenes using copper-catalysis. This new method allows the regioselective formation of a range of substituted oxazoles. The required 1,2-dihaloalkenes can prepared by simple treatment of alkynes with elemental bromine or iodine.
Key words
oxazoles - C-N and C-O cross-coupling - copper - cyclization - domino reaction - heterocycles
References
1a
Oxazoles: Synthesis, reactions, and spectroscopy
Part B, Vol. 60:
Palmer DC.
J. Wiley & Sons;
Hoboken:
2004.
1b
Oxazoles: Synthesis, reactions, and spectroscopy
Part A, Vol. 60:
Palmer DC.
J. Wiley & Sons;
Hoboken:
2003.
1c
Boyd GV. In
Science of Synthesis
Vol. 11:
Schaumann E.
Georg Thieme Verlag;
Stuttgart:
2002.
p.383
1d
Hartner FW. In
Comprehensive Heterocyclic Chemistry II
Vol. 3:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
p.261
1e
Wipf P.
Chem. Rev.
1995,
95:
2115
1f
Turchi IJ.
Oxazoles in Heterocyclic Compounds
Vol. 45:
Turchi IJ.
Wiley;
New York:
1986.
1g
Turchi IJ.
Dewar MJS.
Chem. Rev.
1975,
75:
389
For recent reviews on the synthesis of oxazole containing natural products, see:
2a
Jin Z.
Nat. Prod. Rep.
2006,
23:
464
2b
Yeh VSC.
Tetrahedron
2004,
60:
11995
3a
Altenhoff G.
Glorius F.
Adv. Synth. Catal.
2004,
346:
1661
3b
Evindar G.
Batey RA.
J. Org. Chem.
2006,
71:
1802
4a
Klapars A.
Huang X.
Buchwald SL.
J. Am. Chem. Soc.
2002,
124:
7421
4b
Kwong FY.
Klapars A.
Buchwald SL.
Org. Lett.
2002,
4:
581
4c
Jiang L.
Job GE.
Klapars A.
Buchwald SL.
Org. Lett.
2003,
5:
3667
4d
Han C.
Shen R.
Su S.
Porco A.
Org. Lett.
2003,
6:
27
For profound reviews on Cu-catalyzed C-N, C-O and C-S couplings, see:
4e
Ley SV.
Thomas AW.
Angew. Chem. Int. Ed.
2003,
42:
5400
4f
Kunz K.
Scholz U.
Ganzer D.
Synlett
2003,
2428
For example, see:
5a
Shin C.-G.
Sato Y.
Sugiyama H.
Nanjo K.
Yoshumura J.
Bull. Chem. Soc. Jpn.
1977,
50:
1788
5b
Chattopadhyay SK.
Kempson J.
McNeil A.
Pattenden G.
Reader M.
Rippon DE.
Waite D.
J. Chem. Soc., Perkin Trans. 1
2000,
2415
For related syntheses and mechanistic investigations, see:
6a
Uemura S.
Okazaki H.
Okano M.
J. Chem. Soc., Perkin Trans. 1
1987,
1278
6b
Bianchini R.
Chiappe C.
Lo Moro G.
Lenoir D.
Lemmen P.
Goldberg N.
Chem. Eur. J.
1999,
5:
1570
6c
Selina AA.
Sergey SK.
Gauchenova EV.
Churakov AV.
Kuz’mina LG.
Howard AK.
Lorberth J.
Zaitseva GS.
Heteroat. Chem.
2004,
15:
43
6d
Barluenga J.
Rodriuez MA.
Campos PJ.
J. Org. Chem.
1990,
55:
3104
6e
Kodomari M.
Sakamoto T.
Yoshitomi S.
Bull. Chem. Soc. Jpn.
1989,
62:
4053
6f
Pagni RM.
Kabalka GW.
Boothe R.
Gaetano K.
Stewart LJ.
Conaway R.
Dial C.
Gray D.
Larson S.
Luidhardt T.
J. Org. Chem.
1988,
53:
4477
6g
Al-Hassan MI.
J. Organomet. Chem.
1989,
372:
183
7 Parameters screened: Ligands: DMEDA (optimal), rac-1,2-diaminocyclohexane (lower conversion, more side products), phenanthroline (no reaction); bases: K2CO3 (optimal), K3PO4 (lower conversion, more side products), Cs2CO3 (lower conversion), Et3N and NaOAc (no reaction). Reaction temperature: <110 °C conversion was found to be incomplete; solvents: toluene (optimal), chlorobenzene (lower conversion), t-BuOH, dioxane (much lower conversion), DMF (no conversion).
8 In a series of experiments, a range of olefins were heated at 110 °C with and without CuI and DMEDA. Whereas (E)-1,2-diiodophenylethylene did not isomerize to the Z-isomer, an isomerization of 1,2-dibromophenylethylene was obtained in cases of older substrates or if small amounts of bromine were added. Bromine-catalyzed isomerizations of dihaloalkenes have previously been described, see: Uemura S.
Okazaki H.
Okano M.
J. Chem. Soc., Perkin Trans. 1
1978,
1278
9
Barhate NB.
Gajare AS.
Wakharkar RD.
Bedekar AV.
Tetrahedron
1999,
55:
11127
10
Pagni RM.
Kabalka GW.
Boothe R.
Gaetano K.
Stewart LJ.
Conaway R.
Dial C.
Gray D.
Larson S.
Luidhardt T.
J. Org. Chem.
1988,
53:
4477
11
Al-Hassan MI.
J. Organomet. Chem.
1989,
372:
183
12
Kodomari M.
Sakamoto T.
Yoshitomi S.
Bull. Chem. Soc. Jpn.
1989,
62:
4053