RSS-Feed abonnieren
DOI: 10.1055/s-2007-983800
Synthesis and Cyclization of 3-Aryl-2-(arylacetoxy)acrylates: A Three-Step Access to Pulvinones
Publikationsverlauf
Publikationsdatum:
26. Juli 2007 (online)
Abstract
(4-Methoxybenzyl)magnesium chloride was acylated with dialkyl oxalates 14a,b,d or S,S-di-tert-butyl dithiooxalate (14c) to give 2-hydroxy-3-(4-methoxyphenyl)acrylates and -thioacrylates 17a-d. Esterification with phenylacetic anhydride or (4-methoxyphenyl)acetic acid/N,N′-dicyclohexylcarbodiimide stereoselectively furnished 2-(arylacetoxy)-3-(4-methoxyphenyl)acrylates and thioacrylates (Z)-18a-d. Treating the latter with potassium tert-butoxide induced Dieckmann condensations, which led to isomerically pure pulvinones 1g,h in up to 88% yield.
Key words
3-arylpyruvate - Dieckmann condensation - enol ester - enolate fragmentation - fluorine-containing ester
- Reviews:
-
1a
Rao YS. Chem. Rev. 1976, 76: 625 -
1b
Pattenden G. Prog. Chem. Nat. Prod. 1978, 35: 133 -
1c
Gill M.Steglich W. Prog. Chem. Nat. Prod. 1987, 51: 1 -
1d
Knight DW. Contemp. Org. Synth. 1994, 1: 287 -
1e
Brückner R. Curr. Org. Chem. 2001, 5: 679 -
1f
Tejedor C.Garcia-Tellado F. Org. Prep. Proced. Int. 2004, 36: 33 - 2
Rehse K.Lehmke J. Arch. Pharm. (Weinheim, Ger.) 1985, 318: 11 -
3a
Caufield CE,Antane SA,Morris KM,Naughton SM,Quagliato DA,Andrae PM,Enos A, andChiarello JF. inventors; WO 2005019196. -
3b
Antane S.Caufield CE.Hu W.Keeney D.Labthavikul P.Morris K.Naughton SM.Petersen PJ.Rasmussen BA.Singh G.Yang Y. Bioorg. Med. Chem. Lett. 2006, 16: 176 - 4
Knight DW.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1979, 70 - 5 Compound 3 was obtained by the base-mediated condensation of (4-methoxyphenyl)acetonitrile with diethyl oxalate followed by O-methylation, anhydride formation, and successive reductions with LiAlH(Ot-Bu)3 and NaBH4:
Knight DW.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1979, 62 - 6
Campbell AC.Maidment MS.Pick JH.Stevenson DFM. J. Chem. Soc., Perkin Trans. 1 1985, 1567 ; compound 4 was obtained by intramolecular Claisen condensation of(ethoxycarbonyl)methyl phenylacetate and subsequent O-methylation - 7 Preparation as described by:
Reffstrup J.Boll PM. Phytochemistry 1979, 18: 325 -
8a
Ramage R.Griffiths GJ.Shutt FE.Sweeney JNA. J. Chem. Soc., Perkin Trans. 1 1984, 1531 -
8b
Ramage R.Griffiths GJ.Shutt FE.Sweeney JNA. J. Chem. Soc., Perkin Trans. 1 1984, 1539 - 9
Kaczybura N.Brückner R. Synthesis 2007, 118 -
10a
Gill M.Kiefel MJ.Lally DA.Ten A. Aust. J. Chem. 1990, 43: 1497 - A related approach was acylating diketone analogues of α-hydroxy ketone 9 with ClCO2Et:
-
10b
Golding BT.Rickards RW.Vanek Z. J. Chem. Soc., Perkin Trans. 1 1975, 1961 ; however, in contrast to starting from compound 9, this furnished only pulvinones with two identical aryl groups -
12a Preparation:
Claisen L.Ewan T. Justus Liebigs Ann. Chem. 1895, 284: 245 -
12b Proof (IR) of enol structure:
Sheley CF.Shechter H. J. Org. Chem. 1970, 35: 2367 - 13 The concentration of the resulting Grignard reagent was determined by titration using N-phenylsalicylhydrazone as an indicator:
Love BE.Jones EG. J. Org. Chem. 1999, 64: 3755 - 14 This procedure was adapted from:
Dao DH.Okamura M.Akasaka T.Kawai Y.Hida K.Ohno A. Tetrahedron: Asymmetry 1998, 9: 2725 - In Z-configured 3-aryl-2-acetoxyacrylates 3 J(C1,H3) = 3.0-4.5 Hz, while for the corresponding E-isomer 3 J(C1,H3) = 9.5-10.5 Hz:
-
15a
Fischer P.Schweizer E.Langner J.Schmidt U. Magn. Reson. Chem. 1994, 32: 567 -
15b
Mancini I.Guella G.Candenas ML.Armesto CP.Depentori D.Pietra F. Helv. Chim. Acta 1998, 81: 1681 - 16 The di-tert-butyl thioester of dithiooxalic acid was prepared from oxalyl chloride and t-BuSH according to:
Stäglich P.Thimm K.Voß J. Justus Liebigs Ann. Chem. 1974, 671 - 17 Bis(trifluoroethyl) oxalate was prepared from oxalyl chloride and trifluoroethanol according to:
Rauhut MM.Bollyky LJ.Roberts BG.Loy M.Whitman RH.Iannotta AV.Semsel AM.Clarke RA. J. Am. Chem. Soc. 1967, 89: 6515 - 18
Bernier D.Brückner R. Synthesis 2007, 2249 - Reviews:
-
19a
Tejedor D.Garcia-Tellado F. Org. Prep. Proced. Int. 2004, 36: 35 -
19b
Zografos AL.Georgiadis D. Synthesis 2006, 3157 - 20
Booth PM.Fox CMJ.Ley SV. J. Chem. Soc., Perkin Trans. 1 1987, 121 - 21
Weinstock J.Blank JE.Oh H.-J.Sutton BM. J. Org. Chem. 1979, 44: 673 - 22 Expulsion of 2,6-di-tert-butyl-4-methylphenoxide from lithium enolates of (2,6-di-tert-butyl-4-methylphenyl) alkylacetic esters at room temperature:
Häner R.Laube R.Seebach D. J. Am. Chem. Soc. 1985, 107: 5396 - 23 Decomposition of lithium-containing ester enolates with Ot-Bu moieties at -30 °C or r.t.:
Seebach D.Amstutz R.Laube T.Schweizer WB.Dunitz J. J. Am. Chem. Soc. 1985, 107: 5403 - 24
Solladié-Cavallo A.Liptaj T.Schmitt M.Solgadi A. Tetrahedron Lett. 2002, 43: 415 ; (13C NMR study of a 70:30 equilibrium mixture of metal-free enolate of isopropyl phenylacetate vs. metal-free isopropoxide/phenylketene) - 25 This is true unless the liberated oxyanion is -O-CH2-OMe, which is inductively stabilized. Originating along with a ketene from the lithium enolate of a MOM ester, these species continue to react, resulting in the formation of an α-hydroxymethylated methyl ester:
Schultz AG.Berger MH. J. Org. Chem. 1976, 41: 585 - Elimination/nucleophilic addition mechanism for the hydrolysis of aryl arylacetates (via ketenes):
-
26a
Broxton TJ.Duddy NW. J. Org. Chem. 1981, 46: 1186 -
26b
Chandrasekar R.Vankatasubramanian N. J. Chem. Soc., Perkin Trans. 2 1982, 1625 - 27 Elimination (E2 and E1cb)/nucleophilic addition mechanism for the aminolysis of aryl arylacetates (via arylketenes):
Cho BR.Jeong HC.Seung YJ.Pyun SY. J. Org. Chem. 2002, 67: 5232 - First reports of elimination/nucleophilic addition mechanisms of ester hydrolysis (via ketenes):
-
28a
Holmquist B.Bruice TC. J. Am. Chem. Soc. 1969, 91: 2993 ; (with dialkyl arylmalonates) -
28b
Holmquist B.Bruice TC. J. Am. Chem. Soc. 1969, 91: 3003 ; (with 2-nitrophenyl cyanoacetate) -
28c For independent evidence cf.:
Isaacs N.Najem TS. J. Chem. Soc., Perkin Trans. 2 1988, 557 - 30 We are unaware of literature precedence for the decay of the enolate of an enol ester into a ketene and the enolate of a carbonyl compound. The reverse mode, i.e., the addition of aldehyde enolates to arylketenes yielding arylacetic ester enolates is believed to operating in the preparation of alkenyl arylacetates from arylketenes, aldehydes, and a pyridine base:
Schaefer C.Fu GC. Angew. Chem. Int. Ed. 2005, 44: 4606 ; Angew. Chem. 2005, 117, 4682 - 32
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 - 33 This value was recommended by:
Gottlieb HE.Kotlyar V.Nudelman A. J. Org. Chem. 1997, 62: 7512 - 34
Sugiyama H.Ojima N.Kobayashi M.Senda Y.Ishiyama J.-I.Seto S. Agric. Biol. Chem. 1979, 43: 403 - 35
Jefford CW.Knöpfel W.Cadby PA. Tetrahedron Lett. 1978, 19: 3585
References
Type 8 compounds were obtained by the addition of substituted benzylmagnesium chlorides to the C≡N bond of the O-trimethylsilylated cyanohydrin of arylacetaldehydes, followed by hydrolysis (ref 10).
29This is similarly observed if analogously formed ketenes are stabilized by a conjugated ester [28a] or cyano group. [28b]
31The acceptor-substituted enolates derived from Weinstock’s esters 20 appear to be even more susceptible to the same kind of enolate fragmentation. This would be in line with the low yields of the resulting pulvinic esters (5-25%) and the occurrence of arylacetic acid and/or 2-aryl-3-hydroxy-maleates as byproducts. [21]