RSS-Feed abonnieren
DOI: 10.1055/s-2007-983803
Novel Synthesis of Naturally Occurring Pulvinones: A Heck Coupling, Transesterification, and Dieckmann Condensation Strategy
Publikationsverlauf
Publikationsdatum:
26. Juli 2007 (online)
![](https://www.thieme-connect.de/media/synthesis/200715/lookinside/thumbnails/10.1055-s-2007-983803-1.jpg)
Abstract
Phosphine-free Heck alkenylations of iodoarenes with trifluoroethyl 2-acetoxyacrylate (19) led stereoselectively to trifluoroethyl (Z)-2-acetoxycinnamates 31-34, 42, 44, and 51. Deacetylation followed by acylation with N,N′-dicyclohexylcarbodiimide activated arylacetic acids yielded the isomerically pure trifluoroethyl (Z)-2-(arylacetoxy)cinnamates 38a-o. These were excellent substrates of potassium tert-butoxide mediated Dieckmann condensations, and distinctly superior to fluorine-free analogues, furnishing Z-configured pulvinones 1a-o (1i = aspulvinone A). Cleavage of the aryl ether moieties of pulvinones 1d,e,h,n,o provided aspulvinone E (1r), aspulvinone G (1s), 3′,4,4′-trihydroxypulvinone (1v), and aspulvinones B (1x) and H (1y), respectively. The conversion of the 2,4-diiodophenyl ethers 48 and 49 into the 4-iodo-2-prenylphenyl ethers 46 and 50, respectively, was effected by unprecedented ortho-selective iodine-magnesium exchange reactions followed by prenylation.
Key words
2-(acyloxy)acrylates - β-arylpyruvates - Heck reaction - magnesium-iodine exchange - stereoselective synthesis
- Reviews:
-
1a
Pattenden G. Prog. Chem. Nat. Prod. 1978, 35: 133 -
1b
Gill M.Steglich W. Prog. Chem. Nat. Prod. 1987, 51: 1 -
1c
Brückner R. Curr. Org. Chem. 2001, 5: 679 -
2a
Rehse K.Lehmke J. Arch. Pharm. (Weinheim, Ger.) 1985, 318: 11 -
2b
Caufield CE,Antane SA,Morris KM,Naughton SM,Quagliato DA,Andrae PM,Enos A, andChiarello JF. inventors; WO 2005019196. -
2c
Antane S.Caufield CE.Hu W.Keeney D.Labthavikul P.Morris K.Naughton SM.Petersen PJ.Rasmussen BA.Singh G.Yang Y. Bioorg. Med. Chem. Lett. 2006, 16: 176 - Structure elucidation (later confirmed through synthesis):
-
3a
Ramage R.Griffiths GJ.Shutt FE.Sweeney JNA. J. Chem. Soc., Perkin Trans. 1 1984, 1539 - First isolation of a naturally occurring pulvinone, namely 3′,4,4′-trihydroxypulvinone (1v), from the higher fungus Suillus grevillei:
-
3b
Edwards RL.Gill M. J. Chem. Soc., Perkin Trans. 1 1973, 1921 -
4a First isolation of 7 naturally occurring pulvinones , later named5 aspulvinones A-G, from Aspergillus terreus:
Ojima N.Takenaka S.Seto S. Phytochemistry 1973, 12: 2527 ; this study attributed correctly structure 1r to aspulvinone E and described the remaining pulvinones as structurally incompletely defined derivatives thereof -
4b independent isolation of compound 1r (‘aspergillide B1’ until renamed5 aspulvinone E) from the same source:
Golding BT.Rickards RW.Vanek Z. J. Chem. Soc., Perkin Trans. 1 1975, 1961 - 5 Origin of ‘aspulvinone’ terminology:
Ojima N.Takahashi T.Ogura K.Seto S. Tetrahedron Lett. 1976, 13: 1013 ; this paper also describes the isolation and structure determination of aspulvinone H(1y) - 6 Example of a structurally complex pulvinic acid:
Winner M.Giménez A.Schmidt H.Sontag B.Steffan B.Steglich W. Angew. Chem. Int. Ed. 2004, 43: 1883 ; Angew. Chem. 2004, 116, 1919 -
7a
Ojima N.Ogura K.Seto S. J. Chem. Soc., Chem. Commun. 1975, 717 -
7b
Takahashi I.Ojima N.Ogura K.Seto S. Biochemistry 1978, 17: 2696 -
7c
Kobayashi M.Ojima N.Ogura K.Seto S. Chem. Lett. 1979, 579 -
7d
Sagami I.Ojima N.Ogura K.Seto S. Methods Enzymol. 1985, 110: 320 - 8 The structures of aspulvinone A (1i, correct), aspulvinone B (later revised to 1x),9d aspulvinone C (later revised to 1z),9c aspulvinone D (later revised to be 1aa),9c aspulvinone F (later revised),7b,9c and aspulvinone G (later revised to 1s),9a,b were first proposed by:
Ojima N.Takenaka S.Seto S. Phytochemistry 1975, 14: 573 - The structures originally proposed8 for aspulvinones B,4 C,4 D,4 F,4 and G4 were revised by synthetic or biosynthetic correlations and an X-ray analysis in a series of communications by Knight and Pattenden, for a summary see:
-
9a
Begley MJ.Gedge DR.Knight DW.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1979, 77 -
9b
Knight DW.Pattenden G. J. Chem. Soc., Chem. Commun. 1975, 876 ; showed that synthetically per-O-methylated 2′,4,4′-trihydroxypulvinone is different from per-O-methylated aspulvinone G and deduced that aspulvinone G equals 1s -
9c Laboratory synthesis of per-O-methylated aspulvinone G:
Knight DW.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1979, 70 -
9d The identity of aspulvinone D with 1aa emerged from an X-ray structural analysis, and biosynthetic considerations led to establishing the correct structures of aspulvinone C ( = 1z) and aspulvinone F:
Begley MJ.Knight DW.Pattenden G. Tetrahedron Lett. 1976, 17: 131 -
9e The identity of aspulvinone B as 1x was concluded from a synthesis of per-O-methylated 1x:
Knight DW.Pattenden G. J. Chem. Soc., Chem. Commun. 1976, 635 - 10
Vértesy L.Burger H.-J.Kenja J.Knauf M.Kogler H.Paulus EF.Ramakrishna NVS.Swamy KHS.Vijayakumar EKS.Hammann P. J. Antibiot. 2000, 53: 677 - 11
Klostermeyer D.Knops L.Sindlinger T.Polborn K.Steglich W. Eur J. Org. Chem. 2000, 4: 603 - 12
Bernier D.Moser F.Brückner R. Synthesis 2007, 2240 - Benzylic alkaline metals have been condensed with dialkyl oxalates only if derived from a two-fold ester-substituted toluene (M = Li):
-
13a
Julia M.Rolando C.Vincent E.Xu JZ. Heterocycles 1989, 28: 71 - Or from nitrotoluenes (M = Na, K), e.g.
-
13b
Sall DJ.Arfsten AE.Bastian JA.Denney ML.Harms CS. J. Med. Chem. 1997, 40: 2843 -
13c
Suzuki H.Gyoutoku H.Yokoo H.Shinba M.Sato Y.Yamada H.Murakami Y. Synlett 2000, 1196 -
13d
Hume WE.Tokunaga T.Nagata R. Tetrahedron 2002, 58: 3605 - 14 Synthesis of 13 (R = Et, Ar = Ph) from 9 (M = MgCl, Ar = Ph) and diethyl oxalate:
Dao DH.Okamura M.Akasaka T.Kawai Y.Hida K.Ohno A. Tetrahedron: Asymmetry 1998, 9: 2725 - Acylations of Grignard reagents by activated monoalkyl oxalates are known:
-
15a
Nimitz JS.Mosher HS. J. Org. Chem. 1981, 46: 211 -
15b
de las Heras MA.Vaquero JJ.García-Navio JL.Alvarez-Builla J. J. Org. Chem. 1996, 61: 9009 ; we did not attempt an analogous approach to fluorine-containing hydroxycinnamates 13 (R = RF) - 16 Representative syntheses of 2-hydroxycinnamates 13 from arenecarbaldehydes 12 via oxazolones 10:
Dalla V.Cotelle P.Catteau J.-P. Tetrahedron Lett. 1997, 38: 1577 - 17 Synthesis of a 2-hydroxycinnamate 13 from an arenecarbaldehyde 12 via hydantoin 11:
Raap J.Nieuwenhuis S.Creemers A.Hexspoor S.Kragl U.Lugtenburg J. Eur. J. Org. Chem. 1999, 2609 - 18 Synthesis of a 2-hydroxycinnamate 13 from an arenecarbaldehyde 12 via a glycidic ester 14:
Reimann E.Maas H.-J.Pflug T. Monatsh. Chem. 1997, 128: 995 - 19 Trifluoroethyl 2,3-epoxy-2-methylacrylate was obtained by an epoxidation of trifluoroethyl methacrylate with HOF:
Rozen S.Kol M. J. Org. Chem. 1990, 55: 5155 - 20 Syntheses of cis- and trans-2-methoxycinnamate 15 (Ar = Ph, R = Y = Me) by Horner-Wadsworth-Emmons reactions of benzaldehyde:
Seneci P.Leger I.Souchet M.Nadler G. Tetrahedron 1997, 53: 17097 -
21a
Schmidt U.Langner J.Kirschbaum B.Baum C. Synthesis 1994, 1138 ; (12 → 16 for Y = Ac) -
21b
Burk MJ.Kalberg CS.Pizzano A. J. Am. Chem. Soc. 1998, 120: 4345 ; (12 → 16 for Y = Bz) - Horner-Wadsworth-Emmons reactions between deprotonated phosphonato esters containing an OSiR3 substituent at the carbanionic center and arenecarbaldehydes 12 are also known, yet no ensuing desilylation furnished the underlying enol:
-
22a
Pujol B.Sabatier R.Driguez P.-A.Doutheau A. Tetrahedron Lett. 1992, 33: 1447 -
22b
Boehlow TR.Harburn JJ.Spilling CD. J. Org. Chem. 2001, 66: 3111 -
22c
Qin D.Ren RX.Siu T.Zheng C.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4709 ; Angew. Chem. 2001, 113, 4845 -
22d
Bailey KL.Molinski TF. Tetrahedron Lett. 2002, 43: 9657 -
22e
Ogamino T.Ishikawa Y.Nishiyama S. Heterocycles 2003, 61: 73 -
23a
Cacchi S.Ciattini PG.Morera E.Ortar G. Tetrahedron Lett. 1987, 28: 3039 -
23b
Sakamoto T.Kondo Y.Kashiwagi Y.Yamanaka H. Heterocycles 1988, 27: 257 -
23c
Sakamoto T.Kondo Y.Yamanaka H. Heterocycles 1988, 27: 453 -
23d
Merlic CA.Semmelhack MF. J. Organomet. Chem. 1990, 391: C23 -
23e
Waters SP.Kozlowski MC. Tetrahedron Lett. 2001, 42: 3567 -
24a
Mizoroki T.Mori K.Ozaki A. Bull. Chem. Soc. Jpn. 1971, 44: 581 -
24b
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320 -
25a
Carlstroem A.-S.Frejd T. Synthesis 1989, 414 -
25b
Carlstroem A.-S.Frejd T. J. Org. Chem. 1991, 56: 1289 -
25c
Carlstroem A.-S.Frejd T. J. Chem. Soc., Chem. Commun. 1991, 1216 -
25d
Carlstroem A.-S.Frejd T. Acta Chem. Scand. 1992, 46: 163 - 26
Monnin J. Helv. Chim. Acta 1956, 39: 1721 - 28
Jeffery T. Tetrahedron 1996, 52: 10113 - 29 In Z-configured 2-acetoxycinnamates, 3
J(13C1,1H3) = 3.0-4.5 Hz, their E-isomers have 3
J(13C1,1H3) = 9.5-10.5 Hz:
Fischer P.Schweizer E.Langner J.Schmidt U. Magn. Reson. Chem. 1994, 32: 567 -
30a This modification was inspired by:
Gürtler C.Buchwald SL. Chem. Eur. J. 1999, 5: 3107 -
30b For a rationalization of the beneficial effect of Cy2NMe vs. inorganic bases in Heck couplings cf. also:
Hills ID.Fu GC. J. Am. Chem. Soc. 2004, 126: 13178 - 32 Facile oxidative degradation of 2-hydroxycinnamates 13 to the corresponding arenecarbaldehyde, especially in acidic media, has been observed by ourselves and others (e.g., ref. 16). Detailed study with methyl 2-hydroxy-4′-methoxy-cinnamate:
Jefford CW.Knöpfel W.Cadby PA. Tetrahedron. Lett. 1978, 19: 3585 -
33a
Neises B.Steglich W. Angew. Chem., Int. Ed. Engl. 1978, 17: 522 ; Angew. Chem. 1978, 90, 556 -
33b
Neises B.Steglich W. Org. Synth. Coll. Vol. VII John Wiley & Sons; London: 1990. p.93-95 - 34
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 - 35
Kaczybura N.Brückner R. Synthesis 2007, 118 - 36
Hennessy EJ.Buchwald SL. Org. Lett. 2002, 4: 269 - 37 Method:
Toussaint O.Capdevielle P.Maumy M. Synthesis 1986, 1029 - 38
Gill M.Kiefel MJ.Lally DA.Ten A. Aust. J. Chem. 1990, 43: 1497 - 39
Fatope MO.Abraham DJ. J. Med. Chem. 1987, 30: 1973 - 40 Method:
Kajigaeshi S.Kakinami T.Moriwaki M.Watanabe M.Fujisaki S.Okamoto T. Chem. Lett. 1988, 795 - 41 For a recent review see:
Hoarau C.Pettus TRR. Synlett 2003, 127 - 42
Wirth HO.Königstein O.Kern W. Justus Liebigs Ann. Chem. 1960, 634: 84 - 43
Edgar KJS.Falling N. J. Org. Chem. 1990, 55: 5287 - 44 To the best of our knowledge, there is just one ortho-selective halogen-metal exchange reaction of an aromatic compound, which contains a metal-directing substituent at C1 and halogen atoms both at C2 and C4: the ortho-selective magnesiation of 2,4-dibromoanisole with i-PrMgCl by:
Nishiyama H.Isaka K.Itoh K.Ohno K.Nagase H.Matsumoto K.Yoshiwara H. J. Org. Chem. 1992, 57: 407 - 45 Iodine-magnesium exchange using i-PrMgCl in THF:
Boymond L.Rottländer M.Cahiez G.Knochel P. Angew. Chem. Int. Ed. 1998, 37: 1701 ; Angew. Chem. 1998, 110, 1801 - 46 BBr3-mediated deprotections of ortho-prenylated methyl phenyl ethers and subsequent in situ cyclizations giving chromanes:
Eicher T.Tiefensee K.Doenig R.Pick P. Synthesis 1991, 98 ; and references therein - 47 Deprotection of aryl methyl ethers with LiSEt/DMF:
Fentrill GI.Mirrington RN. Tetrahedron Lett. 1970, 11: 1327 - 48 Deprotection of aryl methyl ethers with PhSH/K2CO3/NMP:
Nayak MK.Chakraborti AK. Tetrahedron Lett. 1997, 38: 8749 - 49 Deprotection of aryl methyl ethers with LiI in quinoline:
Kirschke K.Wolff E. J. Prakt. Chem. 1995, 337: 405 - 50 Precedence for the chemoselective cleavage of a benzyl ether in the presence of a trisubstituted C=C double bond by catalytic hydrogenation:
Barrero AF.Alvarez-Manzaneda EJ.Chahboun R. Tetrahedron Lett. 1997, 38: 8101 - 51 Precedence for the chemoselective cleavage of a benzyl ether in the presence of a trisubstituted C=C double bond by catalytic transfer hydrogenation:
Iikubo K.Ishikawa Y.Ando N.Umezawa K.Nishiyama S. Tetrahedron Lett. 2002, 43: 291 - 52 Cleavage of benzyl ethers with lithium naphthalenide:
Alonso E.Ramon DJ.Yus M. Tetrahedron 1997, 53: 14355 - 53 These conditions were inspired by the cleavage of a benzyl ether within a sensitive, C=C-containing substrate by treatment with BCl3 (CH2Cl2, -78 °C to 0 °C) and subsequent methanolysis of the resulting boronic ester (-78 °C):
Williams DR.Brown DL.Benbow JW. J. Am. Chem. Soc. 1989, 111: 1923 - 54
Gottlieb HE.Kotlyar V.Nudelman A. J. Org. Chem. 1997, 62: 7512 - 55
Afonya TCA.Epelle FBM.Osman SAA.Whalley WB. J. Chem. Res., Miniprint 1985, 3301 - 56
Campbell AC.Maidment MS.Pick JH.Stevenson DFM. J. Chem. Soc., Perkin Trans. 1 1985, 1567 - 57
Bates RW.Gabel CJ. Tetrahedron Lett. 1993, 34: 3547
References
We could also esterify trifluoroethyl pyruvate (25) to give trifluoroethyl 2-[(4-methoxyphenyl)acetoxy]acrylate (20), employing the mixed anhydride obtained from (4-meth-oxyphenyl)acetic acid, TFAA (2.0 equiv), and TsOH·H2O (cat., toluene, reflux, 12 h); however, the low yield of 20 (21%) by this route kept us from trying to shortcut our two-step synthesis of trifluoroethyl 2-(arylacetoxy)cinnamates by using the one-step alternative of a Heck coupling between iodoarenes 17 and this reagent.
31Attempts to arylate ethyl 2-(trimethylsiloxy)acrylate (21), prepared according to: Barton D. H. R., Chern C.-Y., Jaszberenyi J. C.; Tetrahedron; 1995, 51: 1867; with 4-iodoanisole under conditions reasonably effective for ethyl 2-acetoxyacrylate (18, cf. Table [2] , entry 3) failed completely. Therefore, we did not prepare trifluoroethyl 2-(trimethylsiloxy)acrylate (22) as a potential substrate of Heck arylation