RSS-Feed abonnieren
DOI: 10.1055/s-2007-983882
Trimethylsilyl Trifluoromethanesulfonate Catalyzed Nucleophilic Substitution To Give C- and N-Glucopyranosides Derived from d-Glucopyranose
Publikationsverlauf
Publikationsdatum:
11. September 2007 (online)
Abstract
This paper describes the synthesis of C- and N-glucopyranosides via trimethylsilyl trifluoromethanesulfonate catalyzed nucleophilic substitution of glucopyranosides, derived from d-glucopyranose, with methyl, ethyl, n-butyl, allyl, benzyl, and phenyl groups at the anomeric carbon centers. Generally, the reactions using allyltrimethylsilane, trimethylsilyl azide, trimethylsilyl cyanide, and 1-phenyl-1-(trimethylsiloxy)ethene as the nucleophiles in the presence of 20 mol% trimethylsilyl trifluoromethanesulfonate in acetonitrile at -40 °C smoothly proceeded with α-stereoselectivity to afford various C- and N-glucopyranosides in 78-99% yield. Although a decrease in the synthetic yields was observed for some reactions using glucopyranoses with allyl and benzyl groups at the anomeric carbon, the yields could be improved using glucopyranosyl acetates in the presence of 20 mol% trimethylsilyl trifluoromethanesulfonate in acetonitrile-dichloromethane (1:1) at -78 °C.
Key words
glycosides - nucleophilic substitutions - d-glucopyranose - trifluoromethanesulfonate catalysis - trimethylsilylated nucleophiles
- 1
Levy DE.Tang C. The Chemistry of C-Glycosides Pergamon; Oxford: 1995. - For examples, see:
-
2a
Suh H.Wilcox CS. J. Am. Chem. Soc. 1998, 110: 470 -
2b
Nicolaou KC.Bunnage MK.McGarry DG.Shi S.Somers PK.Wallace PA.Chu X.-J.Agrios KA.Gunzner JL.Yang Z. Chem. Eur. J. 1999, 5: 599 -
2c
Nicolaou KC.Reddy KR.Skokotas G.Sato F.Xiao X.-Y.Hwang C.-K. J. Am. Chem. Soc. 1993, 115: 3558 -
2d
Gomez AM.Casillas M.Valverde S.Lopez JC. Tetrahedron: Asymmetry 2001, 12: 2175 - For examples, see:
-
3a
Kraus GA.Molina MT. J. Org. Chem. 1988, 53: 752 -
3b
Czernecki S.Ville G. J. Org. Chem. 1989, 54: 610 - For examples of reported C-glycosidation methods, see:
-
4a
Chen G.-R.Fei ZB.Huang X.-T.Xie Y.-Y.Xu J.-L.Gola J.Steng M.Praly J.-P. Eur. J. Org. Chem. 2001, 2939 -
4b
Gomez AM.Uriel C.Jarosz S.Valverde S.Lopez JC. Eur. J. Org. Chem. 2003, 4830 ; and references cited therein - For the reported O-glycosidation methods, see:
-
4c
Yamanoi T.Oda Y.Matsuda S.Yamazaki I.Matsumura K.Katsuraya K.Watanabe M.Inazu T. Tetrahedron 2006, 62: 10383 -
4d
See also references cited in reference 4c.
-
5a
See reference 4c.
-
5b
Yamanoi T.Matsuda S.Yamazaki I.Inoue R.Hamasaki K.Watanabe M. Heterocycles 2006, 68: 673 -
5c
Yamanoi T.Inoue R.Matsuda S.Katsuraya K.Hamasaki K. Tetrahedron: Asymmetry 2006, 17: 2914 -
5d
Yamanoi T.Matsumura K.Matsuda S.Oda Y. Synlett 2005, 2973 -
5e
Yamanoi T.Oda Y.Yamazaki I.Shinbara M.Morimoto K.Matsuda S. Lett. Org. Chem. 2005, 2: 242 - 6
Yamanoi T.Oda Y. Heterocycles 2002, 57: 229 - 7 We also found that glucopyranoses carrying vinyl groups at the anomeric centers showed quite different reactivity with nucleophiles such as allyltrimethylsilane and silyl enol ethers. The reactions of the glucopyranoses with these nucleophiles in the presence of TMSOTf afforded the exo-glycals via an SN1′-type reaction mechanism, see:
Yamanoi T.Nara Y.Matsuda S.Oda Y.Yoshida A.Katsuraya K.Watanabe M. Synlett 2007, 785 - 8
Wenger W.Vasella A. Helv. Chim. Acta 2000, 1542 - 9
Yang W.-B.Yang Y.-Y.Gu Y.-F.Wang S.-H.Chang C.-C.Lin C.-H. J. Org. Chem. 2002, 67: 3773 - 10
Ellsworth BA.Doyle AG.Patel M.Caceres-Cortes J.Meng W.Deshpande PP.Pullockaran A.Washburn WN. Tetrahedron: Asymmetry 2003, 14: 3243 - 11
Li X.Ohtake H.Takahashi H.Ikegami S. Tetrahedron 2001, 57: 4283