References and Notes
For reviews concerning organcatalysis, see:
1a
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5238 ; Angew. Chem. 2004, 39, 5248
1b
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
1c
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
1d
Ramón DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602 ; Angew. Chem. 2005, 117, 1628
For examples and reviews of asymmetric organocatalytic domino reactions, see:
2a
Lelais G.
MacMillan DWC.
Aldrichimica Acta
2006,
39:
79
2b
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570 ; Angew. Chem.; 2007, 119: 1590
2c
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
2d
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
2e
Marigo M.
Bertelsen S.
Landa A.
Jørgensen KA.
J. Am. Chem. Soc.
2006,
128:
5475
2f
Marigo M.
Jørgensen KA.
Chem. Commun.
2006,
2001
2g
Wang W.
Li H.
Wang J.
Zu LS.
J. Am. Chem. Soc.
2006,
128:
10354
2h
Rueping M.
Azap C.
Angew. Chem. Int. Ed.
2006,
45:
7832 ; Angew. Chem. 2006, 118, 7996
2i
Carlone A.
Cabrera S.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2007,
46:
1101 ; Angew. Chem. 2007, 119, 1119
2j
Li H.
Wang J.
E-Nunu T.
Zu LS.
Jiang W.
Wei S.
Wang W.
Chem. Commun.
2007,
507
2k
Wang BM.
Wu FH.
Wang Y.
Liu XF.
Deng L.
J. Am. Chem. Soc.
2007,
129:
768
2l
Zu LS.
Wang J.
Li H.
Xie HX.
Jiang W.
Wang W.
J. Am. Chem. Soc.
2007,
129:
1036
3 For a review concerning the application of organocatalysis to natural product synthesis, see: de Figueiredo RM.
Christmann M.
Eur. J. Org. Chem.
2007,
in press
4a
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
4b
Enders D.
Hüttl MRM.
Runsink J.
Raabe G.
Wendt B.
Angew. Chem. Int. Ed.
2007,
46:
467 ; Angew. Chem. 2007, 119, 471
For reviews of organocatalytic Michael additions of stabilized carbon nucleophiles, including nitroalkanes, to enals and enones, see:
5a
Ballini R.
Bosica G.
Fiorini D.
Palmieri A.
Petrini M.
Chem. Rev.
2005,
105:
933
5b
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
5c
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
6a
Wynberg H.
Helder R.
Tetrahedron Lett.
1975,
4057
6b
Colonna S.
Hiemstra H.
Wynberg H.
J. Chem. Soc., Chem. Commun.
1978,
238
6c
Matsumoto K.
Uchida T.
Chem. Lett.
1981,
1673
6d
Latvala A.
Stanchev S.
Linden A.
Hesse M.
Tetrahedron: Asymmetry
1993,
4:
173
6e
Bakó P.
Szöllõsy A.
Bombicz P.
Tõke L.
Synlett
1997,
291
6f
Yamaguchi M.
Shiraishi T.
Igarashi Y.
Hirama M.
Tetrahedron Lett.
1994,
35:
8233
6g
Arai S.
Nakayama K.
Ishida T.
Shioiri T.
Tetrahedron Lett.
1999,
40:
4215
6h
Corey EJ.
Zhang F.-Y.
Org. Lett.
2000,
2:
4257
6i
Hanessian S.
Pham V.
Org. Lett.
2000,
2:
2975
6j
Kim DY.
Huh SC.
Tetrahedron
2001,
57:
8933
6k
Halland N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
8331
6l
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
661 ; Angew. Chem. 2003, 115, 685
6m
Halland N.
Hansen T.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
4955 ; Angew. Chem. 2003, 115, 5105
6n
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Kalikhevich VN.
Eur. J. Org. Chem.
2004,
4014
6o
Tsogoeva SB.
Jagtap SB.
Synlett
2004,
2624
6p
Hanessian S.
Govindan S.
Warrier JS.
Chirality
2005,
17:
540
6q
Vakulya B.
Varga S.
Csámpai A.
Soós T.
Org. Lett.
2005,
7:
1967
6r
Prieto A.
Halland N.
Jørgensen KA.
Org. Lett.
2005,
7:
3897
6s
Ooi T.
Takada S.
Fujioka S.
Maruoka K.
Org. Lett.
2005,
7:
5143
6t
Mitchell CET.
Brenner SE.
Ley SV.
Chem. Commun.
2005,
5346
6u
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Tetrahedron: Asymmetry
2006,
17:
989
6v
Brandau S.
Landa A.
Franzén J.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2006,
45:
4305 ; Angew. Chem. 2006, 118, 4411
6w
Knudsen KR.
Mitchell CET.
Ley SV.
Chem. Commun.
2006,
66
6x
Mitchell CET.
Brenner SE.
Garcia-Fortanet J.
Ley SV.
Org. Biomol. Chem.
2006,
4:
2039
6y
Hanessian S.
Shao Z.
Warrier JS.
Org. Lett.
2006,
8:
4787
6z
Hansen HM.
Longbottom DA.
Ley SV.
Chem. Commun.
2006,
4838
For examples of organocatalytic intramolecular aldol reactions with a ketone as electrophile, see:
7a
Takano S.
Kasahara C.
Ogasawara K.
Chem. Commun.
1981,
635
7b
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272 ; Angew. Chem.
2004, 116, 1292
7c
Hechavarria Fonseca MT.
List B.
Angew. Chem. Int. Ed.
2004,
43:
3958 ; Angew. Chem. 2004, 116, 4048
7d
Enders D.
Niemeier O.
Straver L.
Synlett
2006,
3399
8 Both enantiomers of TMS-diphenylprolinol ether 4 are readily available from d- or l-proline in multigram quantities in a four-step synthesis. For a review regarding the use of this catalyst, see: Palomo C.
Mielgo A.
Angew. Chem. Int. Ed.
2006,
45:
7876 ; Angew. Chem.
2006, 118, 8042
9 CCDC number 642547 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
10
Flack HD.
Acta Crystallogr., Sect. A.
1983,
39:
876
11 All new compounds were fully characterized (mp, optical rotation, NMR, IR, MS, elemental analysis) and the spectroscopic and analytical data are in agreement with the assigned structures.
12
General Procedure
To a solution of nitroketone 2 (3.0 mmol) and TMS-ether (S)-4 (0.60 mmol, 20 mol%) in toluene (3.0 mL) was added enal 3 (3.75 mmol, 1.25 equiv) and benzoic acid (20 mol%). The reaction vessel was then flushed with argon gas, stoppered and stirred at 9 °C for 6-15 d.
Workup A: Direct purification of the reaction mixture by flash chromatography (2:1 pentane-Et2O) afforded cyclohexenes 1.
Workup B: The crude reaction mixture was diluted with CHCl3 (8.0 mL) and heated in the presence of PhCO2H (150 mg) at 65 °C for 2.5 h. Following dilution with Et2O (75 mL), the organic layer was washed with sat. aq NaHCO3 (15 mL) and brine (15 mL), dried (MgSO4), concentrated and purified by flash chromatography (2:1 pentane-Et2O) to afford cyclohexenes 1.11
(5
R
,6
R
)-2-Methyl-5-nitro-6-phenylcyclohex-1-ene Carbaldehyde (1a)
Isolated after 7 d as a pale yellow solid (315 mg, 43%). The ee was determined by HPLC on a chiral stationary phase (Daicel Chiralpak IA, n-heptane-i-PrOH = 95:5, 1.0 mL/min), t
R = 13.7 min(major), 17.0 min(minor). An analytical sample was prepared by recrystallization (CH2Cl2-Et2O-hexane, slow evaporation); mp 89 °C; [α]D
24 -347 (c 1.02, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 2.02 (dddd, J = 14.7, 10.3, 7.0, 3.5 Hz, 1 H, CHHCH2), 2.32 (s, 3 H, Me), 2.33-2.60 (m, 3 H, CHHCH
2), 4.67 (dd, J = 7.3, 3.6 Hz, 1 H, CHNO2), 4.80 (br s, 1 H, CHPh), 7.13-7.18 (m, 2 H, o-Ph), 7.22-7.26 (m, 1 H, p-Ph), 7.28-7.34 (m, 2 H, m-Ph), 10.11 (s, 1 H, CHO) ppm. 13C NMR (75 MHz, CDCl3): δ = 18.4 (Me), 20.8 (C-4), 29.6 (C-3), 41.4 (C-6), 85.7 (C-5), 127.4 (p-Ph), 127.9 (o-Ph), 128.9 (m-Ph), 131.1 (ipso-Ph), 140.1 (C-1), 155.7 (C-2), 189.1 (CHO) ppm. IR (KBr): 3061, 3024, 2973, 2891, 1668, 1639, 1544, 1446, 1371, 1236, 759, 702 cm-1. MS (CI, CH4): m/z (%) = 246 (20) [M+ + 1]. Anal. Calcd for C14H15NO3: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.28; H, 6.08; N, 5.53.