Synlett 2007(12): 1799-1822  
DOI: 10.1055/s-2007-984538
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Annelated, Chiral π-Conjugated Systems: Tetraphenylenes and Helical β-Oligothiophenes

Andrzej Rajca*a, Suchada Rajcaa, Maren Pinkb, Makoto Miyasakaa
a Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
b IUMSC, Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
Fax: +1(402)4729402; e-Mail: arajca1@unl.edu;
Further Information

Publication History

Received 2 March 2007
Publication Date:
27 June 2007 (online)

Abstract

Compounds with highly annelated, chiral π-systems, such as tetraphenylenes and [n]helicenes, are known to possess strong chiral properties and high configurational stability, which are prerequisites for many chiral materials. This account describes the unfolding story about our research on the synthesis and X-ray crystallographic characterization of functionalized nonracemic tetra­phenylenes and helical β-oligothiophenes, as well as related [n]helicene derivatives.

  • 1 Introduction

  • 1.1 Riley’s Three-Dimensional Graphite

  • 1.2 Annelated Helical β-Oligothiophenes: Carbon-Sulfur [n]Helicenes

  • 2 Tetraarylenes

  • 2.1 Double Helical Octaphenylene

  • 2.2 Biphenylene Dimer

  • 2.3 Enantiopure Tetranaphthylene: Binaphthyl Dimer

  • 2.4 Asymmetric Synthesis of Tetraphenylenes: Greek Cross Dodecaphenylene

  • 3 Synthesis of Annelated Helical β-Oligothiophenes

  • 3.1 [7]Helicene

  • 3.2 [7]Helicene: McMurry Reaction

  • 3.3 [11]Helicene

  • 3.4 Toward [n]Helicenes with n >11: Progress Report

  • 4 Discovery of Conjoined Double Helicenes

  • 5 Future Directions

    References and Notes

  • 1 Rajca A. Miyasaka M. Synthesis and Characterization of Novel Chiral Conjugated Materials, In Functional Organic Materials: Syntheses and Strategies   Mueller TJJ. Bunz UHF. Wiley-VCH; Weinheim: 2007.  Chap. 15. p.543-577  
  • 2 Zahn S. Swager TM. Angew. Chem. Int. Ed.  2002,  41:  4225 
  • 3 Oda M. Nothofer H.-G. Lieser G. Scherf U. Meskers SCJ. Neher D. Adv. Mater. (Weinheim, Ger.)  2000,  12:  362 
  • 4 Wilson JN. Steffen W. McKenzie TG. Lieser G. Oda M. Neher D. Bunz UHF. J. Am. Chem. Soc.  2002,  124:  6830 
  • 5 Jeukens CRLPN. Jonkheijm P. Wijnen FJP. Gielen JC. Christianen PCM. Schenning APHJ. Meijer EW. Maan JC. J. Am. Chem. Soc.  2005,  127:  8280 
  • 6 Hassey R. Swain EJ. Hammer NI. Venkataraman D. Barnes MD. Science  2006,  314:  1437 
  • 7 Herman WN. J. Opt. Soc. Am. A  2001,  18:  2806 
  • 8 Chirality in electronic materials: Percec V. Glodde M. Bera TK. Miura Y. Shiyanovskaya I. Singer KD. Balagurusamy VSK. Heiney PA. Schnell I. Rapp A. Spiess H.-W. Hudson SD. Duan H. Nature  2002,  419:  384 
  • 9 Brunsveld L. Folmer BJB. Meijer EW. Sijbesma RP. Chem. Rev.  2001,  101:  4071 
  • 10 Yashima E. Maeda K. Nishimura T. Chem. Eur. J.  2004,  10:  42 
  • 11 Goto A. Akagi K. Angew. Chem. Int. Ed.  2005,  44:  4322 
  • 12 Pu L. Chem. Rev.  1998,  98:  2405 
  • 13 Stone MT. Heemstra JM. Moore JS. Acc. Chem. Res.  2006,  39:  11 
  • 14 Stone MT. Fox JM. Moore JS. Org. Lett.  2004,  6:  3317 
  • 15 Hill DJ. Mio MJ. Prince RB. Hughes TS. Moore JS. Chem. Rev.  2001,  101:  3893 
  • 16 Sugiura H. Nigorikawa Y. Saiki Y. Nakamura K. Yamaguchi M. J. Am. Chem. Soc.  2004,  126:  14858 
  • 17 Meurer PP. Vögtle F. Top. Curr. Chem.  1985,  127:  1 
  • 18 For a review on the synthesis of thiaheterohelicenes, see: Collins SK. Vachon MP. Org. Biomol. Chem.  2006,  4:  2518 
  • 19 For an overview of rigid annulated carbon-sulfur structures, see: Torroba T. García-Valverde M. Angew. Chem. Int. Ed.  2006,  45:  8092 
  • 20 Vyklický L. Eichhorn SH. Katz TL. Chem. Mater.  2003,  15:  3594 
  • 21 Han S. Bond AD. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3223 
  • 22 Han S. Anderson DR. Bond AD. Chu HV. Disch RL. Holmes D. Schulman JM. Teat SJ. Vollhardt KPC. Whitener GD. Angew. Chem. Int. Ed.  2002,  41:  3227 
  • 23 Leading reference for achiral cross-conjugated π-systems: Nielsen MB. Diederich F. Chem. Rev.  2005,  105:  1837 
  • X-ray crystal structure for tetraphenylene:
  • 24a Irngartinger H. Reibel WRK. Acta Crystallogr., Sect. B  1981,  37:  1724 
  • 24b

    Average dihedral angles between the benzene rings in tetraphenylene are 62 (2)°.

  • 25 The tetraphenylene derivative [20]annulene in which o-phenylenes are connected with either acetylene and diacetylene linkages may be explosively converted into pure carbon, methane, and hydrogen, see: Boese R. Matzger AJ. Vollhardt KPC. J. Am. Chem. Soc.  1997,  119:  2052 
  • 26 For [20]annulenes that are derivatives of tetraphenylene, see: Haley MM. Bell ML. English JJ. Johnson CA. Weakley TJR. J. Am. Chem. Soc.  1997,  119:  2956 
  • 27 Rajca A. Safronov A. Rajca S. Schoemaker R. Angew. Chem. Int. Ed.  1997,  36:  488 
  • 28 Marsella MJ. Kim IT. Tham F. J. Am. Chem. Soc.  2000,  122:  974 
  • 29 An DL. Nakano T. Orita A. Otera J. Angew. Chem. Int. Ed.  2002,  41:  171 
  • 30 Chiral rodlike platinum complexes of tetraphenylenes with double helical chains: Peng H.-Y. Lam C.-K. Mak TCW. Cai Z. Ma W.-T. Li Y.-X. Wong HNC. J. Am. Chem. Soc.  2005,  127:  9603 
  • 31 Rashidi-Ranjbar P. Man Y.-M. Sandström J. Wong HNC. J. Org. Chem.  1989,  54:  4888 
  • 32 Gust D. Senkler GH. Mislow K. J. Chem. Soc., Chem. Commun.  1972,  1345 
  • 33 Rajca A. Safronov A. Rajca S. Wongsriratanakul J. J. Am. Chem. Soc.  2000,  122:  3351 
  • 34 Gibson J. Holohan M. Riley HL. J. Chem. Soc.  1946,  456 
  • 35 Riley HL. J. Chim. Phys. Phys.-Chim. Biol.  1950,  565 
  • 36 Diederich F. Rubin Y. Angew. Chem. Int. Ed. Engl.  1992,  31:  1101 
  • 37 Linear oligophenylenes: Schleifenbaum A. Feeder N. Vollhardt KPC. Tetrahedron Lett.  2001,  42:  7329 ; and references cited therein
  • 38 Angular oligophenylenes: Dosa PI. Whitener GD. Vollhardt KPC. Bond AD. Teat SJ. Org. Lett.  2002,  4:  2075 
  • 39 Rajca A. Safronov A. Rajca S. Ross CR. Stezowski JJ. J. Am. Chem. Soc.  1996,  118:  7272 
  • ‘Planarized’ tetraphenylenes:
  • 40a Hellwinkel D. Reiff G. Angew. Chem. Int. Ed. Engl.  1970,  9:  527 
  • 40b Hellwinkel D. Reiff G. Nykodyn V. Justus Liebigs Ann. Chem.  1977,  1013 
  • 40c Thulin B. Wennerström O. Tetrahedron Lett.  1977,  929 
  • 40d Irngartinger H. Reibel WRK. Acta Crystallogr., Sect. B  1981,  37:  1768 
  • 42 Pyrolysis: Lindow DF. Friedman L. J. Am. Chem. Soc.  1967,  89:  1271 
  • 43 Rhodium(I) catalysis: Puglisi O. Bottino FA. Recca A. Stille JK. J. Chem. Res., Synop.  1980,  216 
  • 44 Nickel(0) catalysis: Schwager H. Spyroudis S. Vollhardt KPC. J. Organomet. Chem.  1990,  382:  191 
  • 45 Haddon RC. Acc. Chem. Res.  1992,  25:  127 
  • 46 For an overview of recent research on thiophene-based materials, see: Barbarella G. Melucci M. Sotgiu G. Adv. Mater. (Weinheim, Ger.)  2005,  17:  1581 
  • 47 β-Oligothiophene as a linear tetramer: Ye X.-S. Wong HNC. J. Org. Chem.  1997,  62:  1940 
  • 48 β-Oligothiophene as a cyclic trimer: Hart H. Sasaoka M. J. Am. Chem. Soc.  1978,  100:  4326 
  • 49 Kauffmann T. Greving B. König J. Mitschker A. Woltermann A. Angew. Chem. Int. Ed. Engl.  1975,  14:  713 
  • 50 Kauffmann T. Angew. Chem. Int. Ed. Engl.  1979,  18:  1 
  • 51 Kauffmann T. Greving B. Kriegesmann R. Mitschker A. Woltermann A. Chem. Ber.  1978,  111:  1330 
  • 52 Marsella MJ. Reid RJ. Estassi S. Wang L.-S. J. Am. Chem. Soc.  2002,  124:  12507 
  • 53 Marsella MJ. Acc. Chem. Res.  2002,  35:  944 
  • 54 Efficient syntheses of tetra-3,4-thienylene: Zhou ZH. Yamamoto T. J. Organomet. Chem.  1991,  414:  119 
  • 55 The X-ray crystal structure for tetra-3,4-thienylene indicates that the eight-membered ring has a tub conformation with bond angles of 126.0° and torsional angles of 58°; the dihedral angles between the neighboring thiophene rings are 53.7°: Irngartinger H. Huber-Patz U. Rodewald H. Acta Crystallogr., Sect. C  1985,  417:  1088 
  • 56 [n]Radialenes: Maas G. Hopf H. Angew. Chem., Int. Ed. Engl.  1992,  31:  931 
  • 57 Synthesis of all-thiophene [8]circulene was recently claimed: Chernichenko KY. Sumerin VV. Shpanchenko RV. Balenkova ES. Nenajdenko VG. Angew. Chem. Int. Ed.  2006,  45:  7367 
  • 58 [8]Circulene with alternating benzene and furan rings: Eskildsen J. Reenberg T. Christensen JB. Eur. J. Org. Chem.  2000,  1637 
  • 59 [7]Circulene: Sato M. Yamamoto K. Sonobe H. Yano K. Matsubara H. Fujita H. Sugimoto T. Yamamoto K. J. Chem. Soc., Perkin Trans. 2  1998,  1909 
  • 60 Dithieno[2,3-b:3′,2′-d]thiophene: de Jong F. Janssen MJ. J. Org. Chem.  1971,  36:  1645 
  • 61 Synthesis of tetraphenylenes via copper(II)-mediated oxidation of organolithiums: Wittig G. Klar G. Justus Liebigs Ann. Chem.  1967,  704:  91 
  • 62 Platinum(0) catalysis: Edelbach BL. Lachicotte RJ. Jones WD. J. Am. Chem. Soc.  1998,  120:  2843 
  • Interception of a palladacycle:
  • 63a Masselot D. Charmant JPH. Gallagher T. J. Am. Chem. Soc.  2006,  128:  694 
  • 63b Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • Synthesis of tetraphenylenes via the Diels-Alder reaction-deoxygenation methodology:
  • 64a Wong HNC. Acc. Chem. Res.  1989,  22:  145 
  • 64b Elliott EL. Orita A. Hasegawa D. Gantzel P. Otera J. Siegel JS. Org. Biomol. Chem.  2005,  3:  581 
  • Planar dehydro[8]annulenes tribenzo[a,c,e]cyclooctenes and tetrabenzo[a,c,e,g]cyclo-octenes:
  • 64c Hou X.-L. Huang H. Wong HNC. Synlett  2005,  1073 
  • 66 Rajca A. Wang H. Bolshov P. Rajca S. Tetrahedron  2001,  57:  3725 
  • 67 Wen J.-F. Hong W. Yuan K. Mak TCW. Wong HCN. J. Org. Chem.  2003,  68:  8918 
  • 69 Kabir SMH. Hasegawa M. Kuwatani Y. Yoshida M. Matsuyama H. Iyoda M. J. Chem. Soc., Perkin Trans. 1  2001,  159 
  • 70 Lipshutz BH. Siegmann K. Garcia E. Kayser F. J. Am. Chem. Soc.  1993,  115:  9276 
  • 72 Rajca S. Rajca A. J. Am. Chem. Soc.  1995,  117:  9172 
  • 73 Biphenylene dicarbanions: Bausch JW. Gregory PS. Olah GA. Prakash GKS. Schleyer Pv.R. Segal GA. J. Am. Chem. Soc.  1989,  111:  3633 
  • 74 Shenhar R. Wang H. Hoffman RE. Frish L. Avram L. Willner I. Rajca A. Rabinovitz M. J. Am. Chem. Soc.  2002,  124:  4685 
  • 75 Shenhar R. Willner I. Rajca A. Rabinovitz M. J. Phys. Chem. A  2002,  106:  6206 
  • 2,2′-Dibromo-1,1′-binaphthyl, R- and S-enantiomers:
  • 77a Brown KJ. Berry MS. Murdoch JR. J. Org. Chem.  1985,  50:  4345 
  • Racemic:
  • 77b Takaya H. Akutagawa S. Noyori R. Org. Synth.  1988,  67:  20 
  • 78 2,2′-Dilithio-1,1′-binaphthyl: Brown KJ. Berry MS. Waterman KC. Lingenfelter D. Murdoch JR. J. Am. Chem. Soc.  1984,  106:  4717 
  • 79 Friedman TB. Cao X. Rajca A. Wang H. Nafie LA. J. Phys. Chem. A  2003,  107:  7692 
  • For a review including the duplication method, see:
  • 80a Kagan HB. Fiaud JC. Top. Stereochem.  1988,  18:  249 
  • 80b

    in the absence of stereoselectivity, ee of 15 (P) and yield of 15 (Y) are the following nonlinear functions of the ee of the 1,1′-binaphthyl starting material (p): P = 2p/(1 + p 2)and Y = (1 + p 2)/2.

  • 81 Paquette LA. In Advances in Theoretically Interesting Molecules   Vol. 2:  Thummel RP. JAI; Greenwich CT: 1992.  p.p 1 
  • 82 Goldberg SZ. Raymond KN. Harmon CA. Templeton DH. J. Am. Chem. Soc.  1974,  96:  1348 
  • 83 Oxidation of tetraarylenes can be irreversible, see: Rathore R. Le Magueres P. Lindeman SV. Kochi JK. Angew. Chem. Int. Ed.  2000,  39:  809 
  • 84 Huber W. May A. Müllen K. Chem. Ber.  1981,  114:  1318 
  • 85 Scholz M. Gescheidt G. J. Chem. Soc., Perkin Trans. 2  1994,  735 
  • 86 Korshak YV. Medvedeva TV. Ovchinnikov AA. Spector VN. Nature  1987,  326:  370 
  • 87 Makarova TL. Sundqvist B. Hohne R. Esquinazi P. Kopelevich Y. Scharff P. Davydov VA. Kashevarova LS. Ralkmanina AV. Nature  2001,  413:  716 
  • 88 Miller JS. Adv. Mater. (Weinheim, Ger.)  1992,  4:  435 
  • 89 Raming TP. Winnubst AJA. van Kats CM. Philipse AP. J. Colloid Interface Sci.  2002,  249:  346 
  • 90 Miyasaka M. Rajca A. Pink M. Rajca S. Chem. Eur. J.  2004,  10:  6531 
  • 91 Aujard I. Baltaze J.-P. Baudin J.-B. Cogne E. Ferrage F. Jullien L. Perez E. Prevost V. Qian LM. Ruel O. J. Am. Chem. Soc.  2001,  123:  8177 
  • 92 Brock CP. Schweizer WB. Dunitz JD. J. Am. Chem. Soc.  1991,  113:  9811 
  • 93 For a review on sparteine in asymmetric synthesis, see: Hoppe D. Hense T. Angew. Chem. Int. Ed. Engl.  1997,  36:  2282 
  • 94 Fuchs W. Niszel F. Ber. Dtsch. Chem. Ges.  1927,  60:  209 
  • 95 Pischel I. Grimme S. Kotila S. Nieger M. Vögtle F. Tetrahedron: Asymmetry  1996,  7:  109 
  • 96 Newman MS. Lednicer D. J. Am. Chem. Soc.  1956,  78:  4765 
  • 97 Martin RH. Angew. Chem. Int. Ed. Engl.  1974,  13:  649 
  • 98 Martin RH. Bayes M. Tetrahedron  1975,  31:  2135 
  • 99a Yamada K. Ogashiwa S. Tanaka H. Nakagawa H. Kawazura H. Chem. Lett.  1981,  343 
  • 99b Kakagawa H. Ogashiwa S. Tanaka H. Yamada K. Kawazura H. Bull. Chem. Soc. Jpn.  1981,  54:  1903 
  • 100 Caronna T. Sinisia R. Catellani M. Luzzati S. Malpezzia L. Meillea SV. Melea A. Richter C. Sinisi R. Chem. Mater.  2001,  13:  3906 
  • 101 Katz TJ. Angew. Chem. Int. Ed.  2000,  39:  1921 
  • 102 Phillips KES. Katz TJ. Jockusch S. Lovinger AJ. Turro NJ. J. Am. Chem. Soc.  2001,  123:  11899 
  • 103 Liu L. Katz TJ. Tetrahedron Lett.  1990,  31:  3983 
  • 104 Urbano A. Angew. Chem. Int. Ed.  2003,  42:  3986 
  • 105 Schmuck C. Angew. Chem. Int. Ed.  2003,  42:  2448 
  • 106 Collins SK. Grandbois A. Vachon MP. Côté J. Angew. Chem. Int. Ed.  2006,  45:  2923 
  • 107 Larsen J. Bechgaard K. J. Org. Chem.  1996,  61:  1151 
  • Non-photochemical asymmetric syntheses of [n]helicenes with n ≥ 6, [7]helicene:
  • 108a Carreño MC. González-López M. Urbano A. Chem. Commun. (Cambridge)  2005,  611 
  • Tetrahydro[6]helicene:
  • 108b Teplý F. Stará IG. Starý I. Kollárovič A. Šaman D. Vyskočil Š. Fiedler P. J. Org. Chem.  2003,  68:  5193 
  • 109 Fasel R. Parschau M. Ernst K.-H. Angew. Chem. Int. Ed.  2003,  42:  5178 
  • 110 Bell TW. Hext NM. Chem. Soc. Rev.  2004,  33:  589 
  • 111 Weix DJ. Dreher SD. Katz TJ. J. Am. Chem. Soc.  2000,  122:  10027 
  • 112 Reetz MT. Sostmann S. Tetrahedron  2001,  57:  2515 
  • 113 Sato I. Yamashima R. Kadowaki K. Yamamoto J. Shibata T. Soai K. Angew. Chem. Int. Ed.  2001,  40:  1096 
  • 114a Xu Y. Zhang YX. Sugiyama H. Umano T. Osuga H. Tanaka K. J. Am. Chem. Soc.  2004,  126:  6566 
  • 114b Honzawa S. Okubo H. Anzai S. Yamaguchi M. Tsumoto K. Kumagai I. Bioorg. Med. Chem.  2002,  10:  3213 
  • 115 Liberko CA. Miller LL. Katz TJ. Liu L. J. Am. Chem. Soc.  1993,  115:  2478 
  • 116 Botek E. Spassova M. Champagne B. Asselberghs I. Persoons A. Clays K. Chem. Phys. Lett.  2005,  412:  274 
  • 117 Rajca A. Wang H. Pink M. Rajca S. Angew. Chem. Int. Ed.  2000,  39:  4481 
  • 118 Rajca A. Miyasaka M. Pink M. Wang H. Rajca S. J. Am. Chem. Soc.  2004,  126:  15211 
  • 119 McMurry reaction in the synthesis of [7]thiahelicene: Tanaka K. Suzuki H. Osuga H. J. Org. Chem.  1997,  62:  4465 
  • 120 Miyasaka M. Rajca A. Synlett  2004,  177 
  • 121 Negishi coupling: Dai C. Fu GC. J. Am. Chem. Soc.  2001,  123:  2719-2724  
  • 122 Suzuki coupling: Wong K.-T. Wang C.-F. Chou CH. Su YO. Lee G.-H. Peng S.-M. Org. Lett.  2002,  4:  4439 
  • 123 Palladium-catalyzed borylation of halothiophenes: Christophersen C. Begtrup M. Ebdrup S. Petersen H. Vedso P. J. Org. Chem.  2003,  68:  9513 
  • 124 Sterically hindered biphenyls by Suzuki coupling: Walker SD. Barder TE. Martinelli JR. Buchwald SL. Angew. Chem. Int. Ed.  2004,  43:  1871 
  • 125 Miyasaka M. Rajca A. Pink M. Rajca S. J. Am. Chem. Soc.  2005,  127:  13806 
  • 127 Miyasaka M. Rajca A. J. Org. Chem.  2006,  71:  3264 
  • 130 Osuna RM. Ortiz RP. Hernández V. Navarrete JTL. Miyasaka M. Rajca S. Rajca A. Glaser R. J. Phys. Chem. C  2007,  111:  4854 
  • 131 Blake AJ. Cooke PA. Doyle KK. Gair S. Simpkins NS. Tetrahedron Lett.  1998,  39:  9093 
  • 132 Williams DJ. Colquhoun HM. O’Mahoney CA. J. Chem. Soc., Chem. Commun.  1994,  1643 
  • 133 Rajca A. Utamapanya S. J. Org. Chem.  1992,  57:  1760 
  • 134 Shiraishi K. Rajca A. Pink M. Rajca S. J. Am. Chem. Soc.  2005,  127:  9312 
  • 136 Dai Y. Katz TJ. J. Org. Chem.  1997,  62:  1274 
  • 137 Fox JM. Lin D. Itagaki Y. Fujita T. J. Org. Chem.  1998,  63:  2031 
  • 138 Iwasaki T. Kohinata Y. Nishide H. Org. Lett.  2005,  7:  755 
  • 140 Rajca A. Rajca S. Wongsriratanakul J. J. Am. Chem. Soc.  1999,  121:  6308 
  • 141 Rajca A. Wongsriratanakul J. Rajca S. Science  2001,  294:  1503 
  • 142 Rajca A. Chem. Eur. J.  2002,  8:  4834 
  • 143 Rajca A. Wongsriratanakul J. Rajca S. Cerny RL. Chem. Eur. J.  2004,  10:  3144 
  • 144 Band-gap engineering for cross-conjugated poly(p-phenyleneethynlene)-poly(p-phenylenevinylene) (PPE-PPV) copolymers: Wilson JN. Windscheif PM. Evans U. Myrick ML. Bunz UHF. Macromolecules  2002,  35:  8681 
41

For example, fourfold symmetric structures with a four-center six-electron moiety (‘in-plane aromatic’) were not found for dianions of the biphenylene dimer.

65

Rajca, A.; Li, J. unpublished results.

68

One of the side reactions is the transformation of aryllithium to aryl bromide in the presence of copper(II) bromide.

71

Attempted polymerization of the tert-butyl-substituted biphenylene dimer: Rajca, S.; Rajca, A.; Safronov A. unpublished results.

76

Electrochemistry and electrocrystallization of biphenylene dimer: Rajca, S.; Li, J. unpublished results.

126

The finding of configurational stability for 56 and 56-Li 2 is expected, as less sterically hindered 33-Li 2 is configu-rationally stable as well.

128

Only a preliminary X-ray crystal structure(synchrotron) is available for [9]helicene 60.

129

Unpublished data from Professor Lapkowski’s laboratory (Gliwice, Poland) and from the Rajca laboratory.

135

Rajca, A.; Shiraishi, K.; Pink, M. unpublished research.

139

Functionalized chiral nanotubes and chiral fullerenes may provide molecularly well-defined chiral materials.