Synlett 2007(13): 1977-1993  
DOI: 10.1055/s-2007-984541
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Cationic Rhodium(I)/BINAP-Type Bisphosphine Complexes: Versatile New Catalysts for Highly Chemo-, Regio-, and Enantioselective [2+2+2] Cycloadditions

Ken Tanaka*
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
e-Mail: tanaka-k@cc.tuat.ac.jp;
Further Information

Publication History

Received 8 March 2007
Publication Date:
27 June 2007 (online)

Abstract

Our research group was the first to discover that cationic rhodium(I)/BINAP-type bisphosphine complexes are versatile new catalysts for highly chemo-, regio-, and enantioselective [2+2+2] cycloadditions. The high chemo- and regioselectivity of these ­cycloadditions enabled efficient catalytic synthesis of substituted benzenes, cyclophanes, and nitrogen heterocycles. Furthermore, enantioselective variants of these cycloadditions were also developed that realized efficient catalytic constructions of axial, planar, central, and spiro chirality.

1 Introduction

2 Chemo- and Regioselective [2+2+2] Cycloadditions

2.1 [2+2+2] Cycloaddition of Terminal Alkynes

2.2 [2+2+2] Cycloaddition of Two Different Alkynes

2.3 [2+2+2] Cycloaddition of α,ω-Diynes with Alkynes

2.4 [2+2+2] Cycloaddition of Alkynes with Isocyanates, Isothiocyanates, and Carbon Disulfide

2.5 [2+2+2] Cycloaddition of Alkynes with Nitriles

3 Enantioselective [2+2+2] Cycloadditions

3.1 Construction of Axial Chirality

3.2 Construction of Planar Chirality

3.3 Construction of Central Chirality

3.4 Construction of Spiro Chirality

4 Summary

    References

  • For recent reviews on transition-metal-catalyzed cycloadditions, see:
  • 1a Wender PA. Croatt MP. Deschamps NM. In Comprehensive Organometallic Chemistry   3rd ed., Vol. 10:  Mingos DMP. Crabtree RH. Ojima I. Elsevier; Oxford: 2007.  p.603 
  • 1b Yet L. Chem. Rev.  2000,  100:  2963 
  • 1c Mehta G. Singh V. Chem. Rev.  1999,  99:  881 
  • 1d Ojima I. Tzamarioudaki M. Li Z. Donovan RJ. Chem. Rev.  1996,  96:  635 
  • 1e Lautens M. Klute W. Tam W. Chem. Rev.  1996,  96:  49 
  • 1f Schore NE. Chem. Rev.  1988,  88:  1081 
  • 2 Sato Y. Nishimata T. Mori M. J. Org. Chem.  1994,  59:  6133 
  • 3 Stará IG. Stary I. Kollarovic A. Teply F. Vyskocil S. Saman D. Tetrahedron Lett.  1999,  40:  1993 
  • 4a Tanaka K. Qiao S. Tobisu M. Lo MM.-C. Fu GC. J. Am. Chem. Soc.  2000,  122:  9870 
  • 4b Tanaka K. Fu GC. J. Org. Chem.  2001,  66:  8177 
  • 5a Tanaka K. Fu GC. J. Am. Chem. Soc.  2001,  123:  11492 
  • 5b Tanaka K. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  1607 
  • 5c Tanaka K. Fu GC. Chem. Commun.  2002,  684 
  • 5d Tanaka K. Fu GC. Org. Lett.  2002,  4:  933 
  • 5e Tanaka K. Fu GC. J. Am. Chem. Soc.  2002,  124:  10296 
  • 5f Tanaka K. Fu GC. J. Am. Chem. Soc.  2003,  125:  8078 
  • 6 For the first discovery of a metal-catalyzed [2+2+2] cycloaddition, see: Reppe W. Schweckendick WJ. Justus Liebigs Ann. Chem.  1948,  560:  104 
  • For recent reviews on [2+2+2] cycloadditions of alkynes, see:
  • 7a Chopade PR. Louie J. Adv. Synth. Catal.  2006,  348:  2307 
  • 7b Gandon V. Aubert C. Malacria M. Chem. Commun. (Cambridge)  2006,  2209 
  • 7c Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • 7d Yamamoto Y. Curr. Org. Chem.  2005,  9:  503 
  • 7e Malacria M. Aubert C. Renaud JL. In Science of Synthesis: Houben-Weyl, Methods of Molecular Transformations   Vol. 1:  Lautens M. Trost BM. Thieme; Stuttgart: 2001.  p.439 
  • 7f Saito S. Yamamoto Y. Chem. Rev.  2000,  100:  2901 
  • 7g Grotjahn DB. In Comprehensive Organometallic Chemistry II   Vol. 12:  Abel EW. Stone FGA. Wilkinson G. Hegedus L. Pergamon; Oxford: 1995.  p.741 
  • 7h Boese R. Sickle APV. Vollhardt KPC. Synthesis  1994,  1374 
  • 7i Schore NE. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.1129 
  • 7j Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1984,  23:  539 
  • For recent examples of highly regioselective, catalytic complete intermolecular homo-[2+2+2] cycloadditions of terminal monoalkynes, see:
  • 8a Ozerov OV. Ladipo FT. Patrick BO. J. Am. Chem. Soc.  1999,  121:  7941 
  • 8b Ozerov OV. Patrick BO. Ladipo FT. J. Am. Chem. Soc.  2000,  122:  6423 
  • 8c Saito S. Kawasaki T. Tsuboya N. Yamamoto Y. J. Org. Chem.  2001,  66:  796 
  • For pioneering work on catalytic partial or complete intramolecular [2+2+2] cycloadditions of alkynes, see:
  • 9a Vollhardt KPC. Bergman RG. J. Am. Chem. Soc.  1974,  96:  4996 
  • 9b Hillard RL. Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1975,  14:  712 
  • 9c Hillard RL. Vollhardt KPC. J. Am. Chem. Soc.  1977,  99:  4058 
  • 9d Vollhardt KPC. Acc. Chem. Res.  1977,  10:  1 
  • 10 For a review on rhodium-catalyzed [2+2+2] cycloadditions, see: Fujiwara M. Ojima I. In Modern Rhodium-Catalyzed Organic Reactions   Evans PA. Wiley-VCH; Weinheim: 2005.  Chap. 7. p.129 
  • For neutral rhodium(I) complex mediated, partial or complete intramolecular [2+2+2] cycloadditions of alkynes, see:
  • 11a Müller E. Synthesis  1974,  761 
  • 11b Grigg R. Scott R. Stevenson P. Tetrahedron Lett.  1982,  23:  2691 
  • 11c Grigg R. Scott R. Stevenson P. J. Chem. Soc., Perkin Trans. 1  1988,  1357 
  • 11d Magnus P. Witty D. Stamford A. Tetrahedron Lett.  1993,  34:  23 
  • 11e McDonald FE. Zhu HYH. Holmquist CR. J. Am. Chem. Soc.  1995,  117:  6605 
  • 11f Kotha S. Brahmachary E. Tetrahedron Lett.  1997,  38:  3561 
  • 11g Grigg R. Sridharan V. Wang J. Xu J. Tetrahedron  2000,  56:  8967 
  • 11h Witulski B. Stengel T. Angew. Chem. Int. Ed.  1999,  38:  2426 
  • 11i Witulski B. Alayrac C. Angew. Chem. Int. Ed.  2002,  41:  3281 
  • 11j Witulski B. Zimmermann A. Gowans ND. Chem. Commun.  2002,  2984 
  • 11k Witulski B. Zimmermann A. Synlett  2002,  1855 
  • 11l McDonald FE. Smolentsev V. Org. Lett.  2002,  4:  745 
  • 11m Nishiyama H. Niwa E. Inoue T. Ishima Y. Aoki K. Organometallics  2002,  21:  2572 
  • 11n Kinoshita H. Shinokubo H. Oshima K. J. Am. Chem. Soc.  2003,  125:  7784 
  • 11o Torrent A. González I. Pla-Quintana A. Roglans A. J. Org. Chem.  2005,  70:  2033 
  • 11p Novak P. Pohl R. Kotora M. Hocek M. Org. Lett.  2006,  8:  2051 
  • 11q Tracey MR. Oppenheimer J. Hsung RP. J. Org. Chem.  2006,  71:  8629 
  • 12a Ohshita J. Furumori K. Matsuguchi A. Ishikawa M. J. Org. Chem.  1990,  55:  3277 
  • 12b Field LD. Ward AJ. Turner P. Aust. J. Chem.  1999,  52:  1085 
  • 13 For a review on rhodium-catalyzed cycloadditions, see: Robinson JE. In Modern Rhodium-Catalyzed Organic Reactions   Evans PA. Wiley-VCH; Weinheim: 2005.  p.241 
  • For rhodium-catalyzed intermolecular [2+2+2] cycloadditions of alkynes involving rhodium clusters, see:
  • 14a Baidossi W. Goren N. Blum J. J. Mol. Catal.  1993,  85:  153 
  • Involving dirhodium(II) perfluorobutyrate, see:
  • 14b Doyle MP. Shanklin MS. Organometallics  1994,  13:  1081 
  • Involving dirhodaboranes, see:
  • 14c Yan H. Beatty AM. Fehlner TP. Organometallics  2002,  21:  5029 
  • 15 Tanaka K. Shirasaka K. Org. Lett.  2003,  5:  4697 
  • 16 Tanaka K. Toyoda K. Wada A. Shirasaka K. Hirano M. Chem. Eur. J.  2005,  11:  1145 
  • 17 Saito T. Yokozawa T. Ishizaki T. Moroi T. Sayo N. Miura T. Kumobayashi H. Adv. Synth. Catal.  2001,  343:  264 
  • 18 Zhang X. Mashima K. Koyano K. Sayo N. Kumobayashi H. Akutagawa S. Takaya H. Tetrahedron Lett.  1991,  32:  7283 
  • For examples of transition-metal-catalyzed, complete intermolecular cross-[2+2+2] cycloadditions of alkynes, see:
  • 19a Ura Y. Sato Y. Tsujita H. Kondo T. Imachi M. Mitsudo T. J. Mol. Catal. A: Chem.  2005,  239:  166 
  • 19b Ura Y. Sato Y. Shiotsuki M. Kondo T. Mitsudo T. J. Mol. Catal. A: Chem.  2004,  209:  35 
  • 19c Takeuchi R. Nakaya Y. Org. Lett.  2003,  5:  3659 
  • 19d Mori N. Ikeda S.-I. Odashima K. Chem. Commun.  2001,  181 
  • 19e Dieck TH. Munz C. Müller C. J. Organomet. Chem.  1990,  384:  243 
  • 19f Abdulla K. Booth BL. Stacey C. J. Organomet. Chem.  1985,  293:  103 
  • 20 Tanaka K. Nishida G. Ogino M. Hirano M. Noguchi K. Org. Lett.  2005,  7:  3119 
  • 21a Boñaga LVR. Zhang H.-C. Moretto AF. Ye H. Gautheir DA. Li J. Leo GC. Maryanoff BE. J. Am. Chem. Soc.  2005,  127:  3473 
  • 21b Boñaga LVR. Zhang H.-C. Maryanoff BE. Chem. Commun.  2004,  2394 
  • 21c Boñaga LVR. Zhang H.-C. Gautheir DA. Reddy I. Maryanoff BE. Org. Lett.  2003,  5:  4537 
  • 21d Moretto AF. Zhang H.-C. Maryanoff BE. J. Am. Chem. Soc.  2001,  123:  3157 
  • 22 Tanaka K. Sagae H. Toyoda K. Noguchi K. Eur. J. Org. Chem.  2006,  3575 
  • For recent reviews on the synthesis of nitrogen heterocycles by transition-metal-catalyzed [2+2+2] cycloadditions, see:
  • 23a Nakamura I. Yamamoto Y. Chem. Rev.  2004,  104:  2127 
  • 23b Varela JA. Saá C. Chem. Rev.  2003,  103:  3787 
  • For examples of transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with isocyanates using cobalt catalysts, see:
  • 24a Hong P. Yamazaki H. Synthesis  1977,  50 
  • 24b Hong P. Yamazaki H. Tetrahedron Lett.  1977,  1333 
  • 24c Earl RA. Vollhardt KPC. J. Org. Chem.  1984,  49:  4786 
  • 24d Diversi P. Ingrosso G. Lucherini A. Malquori S. J. Mol. Catal.  1987,  40:  267 
  • Using nickel catalysts, see:
  • 24e Hoberg H. Oster BW. Synthesis  1982,  324 
  • 24f Hoberg H. Oster BW. J. Organomet. Chem.  1982,  234:  C35 
  • 24g Hoberg H. Oster BW. J. Organomet. Chem.  1983,  252:  359 
  • 24h Duong HA. Cross MJ. Louie J. J. Am. Chem. Soc.  2004,  126:  11438 
  • 24i Duong HA. Louie J. Tetrahedron  2006,  62:  7552 
  • Using ruthenium catalysts, see:
  • 24j Yamamoto Y. Takagishi H. Itoh K. Org. Lett.  2001,  3:  2117 
  • 24k Yamamoto Y. Kinpara K. Saigoku T. Takagishi H. Okuda S. Nishiyama H. Itoh K. J. Am. Chem. Soc.  2005,  127:  605 
  • For examples of rhodium-catalyzed [2+2+2] cycloadditions of alkynes with isocyanates, see:
  • 25a Flynn ST. Hasso-Henderson SE. Parkins AW. J. Mol. Catal.  1985,  32:  101 
  • 25b Yu RT. Rovis T. J. Am. Chem. Soc.  2006,  128:  2782 
  • 25c Yu RT. Rovis T. J. Am. Chem. Soc.  2006,  128:  12370 
  • 25d Kondo T. Nomura M. Ura Y. Wada K. Mitsudo T. Tetrahedron Lett.  2006,  47:  7107 
  • 26 Tanaka K. Wada A. Noguchi K. Org. Lett.  2005,  7:  4737 
  • 27 Tanaka K. Wada A. Noguchi K. Org. Lett.  2006,  8:  907 
  • For examples of transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with isothiocyanates using cobalt catalysts, see:
  • 28a Wakatsuki Y. Yamazaki H. J. Chem. Soc., Chem. Commun.  1973,  280 
  • Using ruthenium catalysts, see:
  • 28b Yamamoto Y. Takagishi H. Itoh K. J. Am. Chem. Soc.  2002,  124:  28 
  • 29 Beesley RM. Ingold CK. Thorpe JF. J. Chem. Soc.  1915,  1080 
  • For pioneering work on transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with nitriles, see:
  • 30a Wakatsuki Y. Yamazaki H. J. Chem. Soc., Dalton Trans.  1978,  1278 
  • 30b Bönnemann H. Brinkmann R. Synthesis  1975,  600 
  • 30c Bönnemann H. Angew. Chem., Int. Ed. Engl.  1978,  17:  505 
  • 30d

    See also reference 28a.

  • For pioneering work on cobalt-catalyzed [2+2+2] cycloadditions of α,ω-diynes with nitriles, and of cyanoalkynes with monoalkynes, see:
  • 31a Naiman A. Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1977,  16:  708 
  • 31b Brien DJ. Naiman A. Vollhardt KPC. J. Chem. Soc., Chem. Commun.  1982,  133 
  • 31c Parnell CA. Vollhardt KPC. Tetrahedron  1985,  41:  5791 
  • For selected recent examples of transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with nitriles using cobalt(I) catalysts, see:
  • 32a Fatland AW. Eaton BE. Org. Lett.  2000,  2:  3131 
  • 32b Heller B. Sundermann B. Buschmann H. Drexler H.-J. You J. Holzgrabe U. Heller E. Oehme G. J. Org. Chem.  2002,  67:  4414 
  • 32c Gutnov A. Abaev V. Redkin D. Fischer C. Bonrath W. Heller B. Synlett  2005,  1188 
  • 32d Groth U. Huhn T. Kesenheimer C. Kalogerakis A. Synlett  2005,  1758 
  • 32e Hrdina R. Stará I. Dufková L. Mitchel S. Cisarová I. Kotora M. Tetrahedron  2006,  62:  968 
  • 32f Zhou Y. Porco JA. Snyder JK. Org. Lett.  2007,  9:  393 
  • 32g Chang H.-T. Jeganmohan M. Cheng C.-H. Org. Lett.  2007,  9:  505 
  • 32h Kase K. Goswami A. Ohtaki K. Tanabe E. Saino N. Okamoto S. Org. Lett.  2007,  9:  931 
  • Using ruthenium(II) catalysts, see:
  • 32i Yamamoto Y. Okuda S. Itoh K. Chem. Commun.  2001,  1102 
  • 32j Yamamoto Y. Ogawa R. Itoh K. J. Am. Chem. Soc.  2001,  123:  6189 
  • 32k Varela JA. Castedo L. Saà C. J. Org. Chem.  2003,  68:  8595 
  • 32l Yamamoto Y. Kinpara K. Nishiyama H. Itoh K. Adv. Synth. Catal.  2005,  347:  1913 
  • 32m Yamamoto Y. Kinpara K. Ogawa R. Nishiyama H. Itoh K. Chem. Eur. J.  2006,  12:  5618 
  • Using nickel(0) catalysts, see:
  • 32n McCormick MM. Duong HA. Zuo G. Louie J. J. Am. Chem. Soc.  2005,  127:  5030 
  • 32o Takevec TN. Zuo G. Simon K. Louie J. J. Org. Chem.  2006,  71:  5834 
  • For examples of rhodium-catalyzed [2+2+2] cycloadditions of alkynes with nitriles, see:
  • 33a Cioni P. Diversi P. Ingrosso G. Lucherini A. Ronca P. J. Mol. Catal.  1987,  40:  337 
  • 33b Cioni P. Diversi P. Ingrosso G. Lucherini A. Ronca P. J. Mol. Catal.  1987,  40:  359 
  • 34 Tanaka K. Suzuki N. Nishida G. Eur. J. Org. Chem.  2006,  3917 
  • 35 Grigg R. Scott R. Stevenson P. J. Chem. Soc., Perkin Trans. 1  1988,  1365 
  • For a recent review on atroposelective synthesis of axially chiral biaryls, see:
  • 36a Bringmann G. Mortimer AJP. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed.  2005,  44:  5384 
  • For naturally occurring biaryls, see:
  • 36b Bringmann G. Günther C. Ochse M. Schupp O. Tasler S. In Progress in the Chemistry of Organic Natural Products   Vol. 82:  Herz W. Falk H. Kirby GW. Moore RE. Springer; Vienna: 2001.  p.1 
  • For chirality exchange from sp3 central chirality to axial chirality, see:
  • 37a Nishii Y. Wakasugi K. Koga K. Tanabe Y. J. Am. Chem. Soc.  2004,  126:  5358 
  • For a reaction of two chromium carbenes connected with chiral tether with a 1,3-diyne, see:
  • 37b Bao J. Wulff WD. Fumo MJ. Grant EB. Heller DP. Whitcomb MC. Yeung S.-M. J. Am. Chem. Soc.  1996,  118:  2166 
  • 38 For pioneering work on the synthesis of biaryls by [2+2+2] cycloadditions of alkynes, see: Sato Y. Ohashi K. Mori M. Tetrahedron Lett.  1999,  40:  5231 
  • 39 Tanaka K. Nishida G. Wada A. Noguchi K. Angew. Chem. Int. Ed.  2004,  43:  6510 
  • 40 Gutnov A. Heller B. Fischer C. Drexler H.-J. Spannenberg A. Sundermann B. Sundermann C. Angew. Chem. Int. Ed.  2004,  43:  3795 
  • 41 Shibata T. Fujimoto T. Yokota K. Takagi K. J. Am. Chem. Soc.  2004,  126:  8382 
  • For a review on chiral biaryl-type bisphosphine ligands, see:
  • 42a Shimizu H. Nagasaki I. Saito T. Tetrahedron  2005,  61:  5405 
  • For an account of chiral biaryl-type monophosphine ligands, see:
  • 42b Hayashi T. Acc. Chem. Res.  2000,  33:  354 
  • 43 For a recent review, see: Wallace TW. Org. Biomol. Chem.  2006,  4:  3197 
  • 44 For the synthesis of axially chiral biaryl phosphonates through asymmetric Suzuki cross-coupling, see: Yin J. Buchwald SL. J. Am. Chem. Soc.  2000,  122:  12051 
  • 45 Nishida G. Suzuki N. Noguchi K. Tanaka K. Org. Lett.  2006,  8:  3489 
  • 46a Yamamoto Y. Hata K. Arakawa T. Itoh K. Chem. Commun.  2003,  1290 
  • 46b Yamamoto Y. Saigoku T. Ohgai T. Nishiyama H. Itoh K. Chem. Commun.  2004,  2702 
  • 46c Yamamoto Y. Saigoku T. Nishiyama H. Ohgai T. Itoh K. Org. Biomol. Chem.  2005,  3:  1768 
  • 46d

    See also references 9c and 11e.

  • 47 Tanaka K. Suda T. Noguchi K. Hirano M. J. Org. Chem.  2007,  72:  2243 
  • 48a Kitagawa O. Yoshikawa M. Tanabe H. Morita T. Takahashi M. Dobashi Y. Taguchi T. J. Am. Chem. Soc.  2006,  128:  12923 
  • 48b Kitagawa O. Takahashi M. Yoshikawa M. Taguchi T. J. Am. Chem. Soc.  2005,  127:  3676 
  • 48c Kitagawa O. Kohriyama M. Taguchi T. J. Org. Chem.  2002,  67:  8682 
  • 48d Terauchi J. Curran DP. Tetrahedron: Asymmetry  2003,  14:  587 
  • 50 Tanaka K. Takeishi K. Noguchi K. J. Am. Chem. Soc.  2006,  128:  4586 
  • 51 For the synthesis of racemic phosphorus-containing biaryls via the Diels-Alder reaction using phosphorus-containing dienophiles, see: Ashburn BO. Carter RG. Angew. Chem. Int. Ed.  2006,  45:  6737 
  • 52 Very recently, Heller and co-workers have reported the synthesis of phosphorus-bearing, axially chiral biaryls by cobalt-catalyzed, asymmetric cross-cyclotrimerization, but both yields and ee values are not sufficient, see: Heller B. Gutnov A. Fischer C. Drexler H.-J. Spannenberg A. Redkin D. Sundermann C. Sundermann B. Chem. Eur. J.  2007,  13:  1117 
  • 53 Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed.  2007,  46:  3951 
  • 54 Buchwald and co-workers recently reported that the substituents ortho to the phosphorus center of achiral biaryl monophosphines may lock the ligand into a certain conformation, which plays an important role in the palladium-catalyzed cross-coupling reactions, see: Burgos CH. Barder TE. Huang X. Buchwald SL. Angew. Chem. Int. Ed.  2006,  45:  4321 
  • For reviews on cyclophanes, see:
  • 55a Modern Cyclophane Chemistry   Gleither R. Hopf H. Wiley; Chichester: 2004. 
  • 55b Cyclophane Chemistry   Vögtle F. Wiley; Chichester: 1993. 
  • 56 For a review on cyclophane synthesis, see: Kane VV. De Wolff WH. Bickelhaupt F. Tetrahedron  1994,  50:  4574 
  • 57 Wijsman GW. de Kanter FJJ. de Wolf WH. Bickelhaupt F. Eur. J. Org. Chem.  2001,  2743 
  • 58 Tanaka K. Sagae H. Toyoda K. Noguchi K. Hirano M. J. Am. Chem. Soc.  2007,  129:  1522 
  • For selected recent examples of the synthesis of planar-chiral [n]metacyclophanes, see:
  • 60a Piatek P. Kalisiak J. Jurczak J. Tetrahedron Lett.  2004,  45:  3309 
  • 60b Kubik S. Goddard R. J. Org. Chem.  1999,  64:  9475 
  • 60c Grimme S. Harren J. Sobanski A. Vögtle F. Eur. J. Org. Chem.  1998,  1491 
  • 61 Pugin B, Martin P, Mueller M, Naud F, Spindler F, Thommen M, Melone G, and Kesselgruber M. inventors; WO  2004089920. 
  • For ruthenium-catalyzed, sequential one-pot transesterification and [2+2+2] cycloaddition of alkynylboronates, see:
  • 63a Yamamoto Y. Ishi J. Nishiyama H. Itoh K. J. Am. Chem. Soc.  2004,  126:  3712 
  • For its application to the synthesis of phthalides, see:
  • 63b Yamamoto Y. Ishi J. Nishiyama H. Itoh K. J. Am. Chem. Soc.  2005,  127:  9625 
  • 64 Tanaka K. Osaka T. Noguchi K. Hirano M. Org. Lett.  2007,  9:  1307 
  • 66a Chan ASC. Hu W. Pai C.-C. Lau C.-P. Jiang Y. Mi A. Yan M. Sun J. Lou R. Deng J. J. Am. Chem. Soc.  1997,  119:  9570 
  • 66b Arai MA. Arai T. Sasai H. Org. Lett.  1999,  1:  1795 
  • 66c Hu A.-G. Fu Y. Xie J.-H. Zhou H. Wang L.-X. Zhou Q.-L. Angew. Chem. Int. Ed.  2002,  41:  2348 
  • 66d Xie J.-H. Wang L.-X. Fu Y. Zhu S.-F. Fan B.-M. Duan H.-F. Zhou Q.-L. J. Am. Chem. Soc.  2003,  125:  4404 
  • 67a Takahashi T. Tsutsui H. Tamura M. Kitagaki S. Nakajima M. Hashimoto S. Chem. Commun.  2001,  1604 
  • 67b Tanaka M. Takahashi M. Sakamoto E. Imai M. Matsui A. Fujio M. Sakai K. Suemune H. Tetrahedron  2001,  57:  1197 
  • 68 Recently Shibata and co-workers used cationic rhodium(I)/modified BINAP complexes for the enantioselective synthesis of spiro compounds, see: Tsuchikama K. Kuwata Y. Shibata T. J. Am. Chem. Soc.  2006,  128:  13686 
  • 69 Varela JA. Castedo L. Saá C. Org. Lett.  1999,  1:  2141 
  • 70 Wada A. Noguchi K. Hirano M. Tanaka K. Org. Lett.  2007,  9:  1295 
  • 71 For a selected recent example, see: Burkinshaw SM. Griffiths J. Towns AD. J. Mater. Chem.  1998,  8:  2677 
  • For our recent publications concerning cationic Rh(I)/modified-BINAP-catalyzed [2+2+2] cycloadditions, see:
  • 72a Tanaka K. Hara H. Nishida G. Hirano M. Org. Lett.  2007,  9:  1907 
  • 72b Tanaka K. Otake Y. Wada A. Hirano M. Org. Lett.  2007,  9:  2203 
  • 72c Tanaka K. Nishida G. Sagae H. Hirano M. Synlett  2007,  1426 
49

For RhCl(PPh3)3-catalyzed [2+2+2] cycloadditions involving alkynamides, see refs 11h, 11i, and 11q.

59

For rhodium-catalyzed macrocyclizations to form ortho- and metacyclophanes via intramolecular [2+2+2] cycloaddition of triynes in an aqueous-organic biphasic system, see reference 11n.

62

For examples of transesterification in metal-catalyzed [2+2+2] cycloadditions, see references 19c, 19e, and 19f.

65

For the synthesis of chiral phthalides by RhCl(PPh3)3-catalyzed [2+2+2] cycloadditions of ester-linked diynes with acetylene, see references 11k and 11l.