Abstract
Our research group was the first to discover that cationic rhodium(I)/BINAP-type bisphosphine
complexes are versatile new catalysts for highly chemo-, regio-, and enantioselective
[2+2+2] cycloadditions. The high chemo- and regioselectivity of these cycloadditions
enabled efficient catalytic synthesis of substituted benzenes, cyclophanes, and nitrogen
heterocycles. Furthermore, enantioselective variants of these cycloadditions were
also developed that realized efficient catalytic constructions of axial, planar, central,
and spiro chirality.
1 Introduction
2 Chemo- and Regioselective [2+2+2] Cycloadditions
2.1 [2+2+2] Cycloaddition of Terminal Alkynes
2.2 [2+2+2] Cycloaddition of Two Different Alkynes
2.3 [2+2+2] Cycloaddition of α,ω-Diynes with Alkynes
2.4 [2+2+2] Cycloaddition of Alkynes with Isocyanates, Isothiocyanates, and Carbon
Disulfide
2.5 [2+2+2] Cycloaddition of Alkynes with Nitriles
3 Enantioselective [2+2+2] Cycloadditions
3.1 Construction of Axial Chirality
3.2 Construction of Planar Chirality
3.3 Construction of Central Chirality
3.4 Construction of Spiro Chirality
4 Summary
Key words
alkynes - asymmetric catalysis - BINAP - cycloadditions - rhodium
References
For recent reviews on transition-metal-catalyzed cycloadditions, see:
<A NAME="RA45407ST-1A">1a </A>
Wender PA.
Croatt MP.
Deschamps NM. In Comprehensive Organometallic Chemistry
3rd ed., Vol. 10:
Mingos DMP.
Crabtree RH.
Ojima I.
Elsevier;
Oxford:
2007.
p.603
<A NAME="RA45407ST-1B">1b </A>
Yet L.
Chem. Rev.
2000,
100:
2963
<A NAME="RA45407ST-1C">1c </A>
Mehta G.
Singh V.
Chem. Rev.
1999,
99:
881
<A NAME="RA45407ST-1D">1d </A>
Ojima I.
Tzamarioudaki M.
Li Z.
Donovan RJ.
Chem. Rev.
1996,
96:
635
<A NAME="RA45407ST-1E">1e </A>
Lautens M.
Klute W.
Tam W.
Chem. Rev.
1996,
96:
49
<A NAME="RA45407ST-1F">1f </A>
Schore NE.
Chem. Rev.
1988,
88:
1081
<A NAME="RA45407ST-2">2 </A>
Sato Y.
Nishimata T.
Mori M.
J. Org. Chem.
1994,
59:
6133
<A NAME="RA45407ST-3">3 </A>
Stará IG.
Stary I.
Kollarovic A.
Teply F.
Vyskocil S.
Saman D.
Tetrahedron Lett.
1999,
40:
1993
<A NAME="RA45407ST-4A">4a </A>
Tanaka K.
Qiao S.
Tobisu M.
Lo MM.-C.
Fu GC.
J. Am. Chem. Soc.
2000,
122:
9870
<A NAME="RA45407ST-4B">4b </A>
Tanaka K.
Fu GC.
J. Org. Chem.
2001,
66:
8177
<A NAME="RA45407ST-5A">5a </A>
Tanaka K.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
11492
<A NAME="RA45407ST-5B">5b </A>
Tanaka K.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
1607
<A NAME="RA45407ST-5C">5c </A>
Tanaka K.
Fu GC.
Chem. Commun.
2002,
684
<A NAME="RA45407ST-5D">5d </A>
Tanaka K.
Fu GC.
Org. Lett.
2002,
4:
933
<A NAME="RA45407ST-5E">5e </A>
Tanaka K.
Fu GC.
J. Am. Chem. Soc.
2002,
124:
10296
<A NAME="RA45407ST-5F">5f </A>
Tanaka K.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
8078
<A NAME="RA45407ST-6">6 </A> For the first discovery of a metal-catalyzed [2+2+2] cycloaddition, see:
Reppe W.
Schweckendick WJ.
Justus Liebigs Ann. Chem.
1948,
560:
104
For recent reviews on [2+2+2] cycloadditions of alkynes, see:
<A NAME="RA45407ST-7A">7a </A>
Chopade PR.
Louie J.
Adv. Synth. Catal.
2006,
348:
2307
<A NAME="RA45407ST-7B">7b </A>
Gandon V.
Aubert C.
Malacria M.
Chem. Commun. (Cambridge)
2006,
2209
<A NAME="RA45407ST-7C">7c </A>
Kotha S.
Brahmachary E.
Lahiri K.
Eur. J. Org. Chem.
2005,
4741
<A NAME="RA45407ST-7D">7d </A>
Yamamoto Y.
Curr. Org. Chem.
2005,
9:
503
<A NAME="RA45407ST-7E">7e </A>
Malacria M.
Aubert C.
Renaud JL. In Science of Synthesis : Houben-Weyl, Methods of Molecular Transformations
Vol. 1:
Lautens M.
Trost BM.
Thieme;
Stuttgart:
2001.
p.439
<A NAME="RA45407ST-7F">7f </A>
Saito S.
Yamamoto Y.
Chem. Rev.
2000,
100:
2901
<A NAME="RA45407ST-7G">7g </A>
Grotjahn DB. In Comprehensive Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FGA.
Wilkinson G.
Hegedus L.
Pergamon;
Oxford:
1995.
p.741
<A NAME="RA45407ST-7H">7h </A>
Boese R.
Sickle APV.
Vollhardt KPC.
Synthesis
1994,
1374
<A NAME="RA45407ST-7I">7i </A>
Schore NE.
In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1129
<A NAME="RA45407ST-7J">7j </A>
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1984,
23:
539
For recent examples of highly regioselective, catalytic complete intermolecular homo-[2+2+2]
cycloadditions of terminal monoalkynes, see:
<A NAME="RA45407ST-8A">8a </A>
Ozerov OV.
Ladipo FT.
Patrick BO.
J. Am. Chem. Soc.
1999,
121:
7941
<A NAME="RA45407ST-8B">8b </A>
Ozerov OV.
Patrick BO.
Ladipo FT.
J. Am. Chem. Soc.
2000,
122:
6423
<A NAME="RA45407ST-8C">8c </A>
Saito S.
Kawasaki T.
Tsuboya N.
Yamamoto Y.
J. Org. Chem.
2001,
66:
796
For pioneering work on catalytic partial or complete intramolecular [2+2+2] cycloadditions
of alkynes, see:
<A NAME="RA45407ST-9A">9a </A>
Vollhardt KPC.
Bergman RG.
J. Am. Chem. Soc.
1974,
96:
4996
<A NAME="RA45407ST-9B">9b </A>
Hillard RL.
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1975,
14:
712
<A NAME="RA45407ST-9C">9c </A>
Hillard RL.
Vollhardt KPC.
J. Am. Chem. Soc.
1977,
99:
4058
<A NAME="RA45407ST-9D">9d </A>
Vollhardt KPC.
Acc. Chem. Res.
1977,
10:
1
<A NAME="RA45407ST-10">10 </A> For a review on rhodium-catalyzed [2+2+2] cycloadditions, see:
Fujiwara M.
Ojima I. In Modern Rhodium-Catalyzed Organic Reactions
Evans PA.
Wiley-VCH;
Weinheim:
2005.
Chap. 7.
p.129
For neutral rhodium(I) complex mediated, partial or complete intramolecular [2+2+2]
cycloadditions of alkynes, see:
<A NAME="RA45407ST-11A">11a </A>
Müller E.
Synthesis
1974,
761
<A NAME="RA45407ST-11B">11b </A>
Grigg R.
Scott R.
Stevenson P.
Tetrahedron Lett.
1982,
23:
2691
<A NAME="RA45407ST-11C">11c </A>
Grigg R.
Scott R.
Stevenson P.
J. Chem. Soc., Perkin Trans. 1
1988,
1357
<A NAME="RA45407ST-11D">11d </A>
Magnus P.
Witty D.
Stamford A.
Tetrahedron Lett.
1993,
34:
23
<A NAME="RA45407ST-11E">11e </A>
McDonald FE.
Zhu HYH.
Holmquist CR.
J. Am. Chem. Soc.
1995,
117:
6605
<A NAME="RA45407ST-11F">11f </A>
Kotha S.
Brahmachary E.
Tetrahedron Lett.
1997,
38:
3561
<A NAME="RA45407ST-11G">11g </A>
Grigg R.
Sridharan V.
Wang J.
Xu J.
Tetrahedron
2000,
56:
8967
<A NAME="RA45407ST-11H">11h </A>
Witulski B.
Stengel T.
Angew. Chem. Int. Ed.
1999,
38:
2426
<A NAME="RA45407ST-11I">11i </A>
Witulski B.
Alayrac C.
Angew. Chem. Int. Ed.
2002,
41:
3281
<A NAME="RA45407ST-11J">11j </A>
Witulski B.
Zimmermann A.
Gowans ND.
Chem. Commun.
2002,
2984
<A NAME="RA45407ST-11K">11k </A>
Witulski B.
Zimmermann A.
Synlett
2002,
1855
<A NAME="RA45407ST-11L">11l </A>
McDonald FE.
Smolentsev V.
Org. Lett.
2002,
4:
745
<A NAME="RA45407ST-11M">11m </A>
Nishiyama H.
Niwa E.
Inoue T.
Ishima Y.
Aoki K.
Organometallics
2002,
21:
2572
<A NAME="RA45407ST-11N">11n </A>
Kinoshita H.
Shinokubo H.
Oshima K.
J. Am. Chem. Soc.
2003,
125:
7784
<A NAME="RA45407ST-11O">11o </A>
Torrent A.
González I.
Pla-Quintana A.
Roglans A.
J. Org. Chem.
2005,
70:
2033
<A NAME="RA45407ST-11P">11p </A>
Novak P.
Pohl R.
Kotora M.
Hocek M.
Org. Lett.
2006,
8:
2051
<A NAME="RA45407ST-11Q">11q </A>
Tracey MR.
Oppenheimer J.
Hsung RP.
J. Org. Chem.
2006,
71:
8629
<A NAME="RA45407ST-12A">12a </A>
Ohshita J.
Furumori K.
Matsuguchi A.
Ishikawa M.
J. Org. Chem.
1990,
55:
3277
<A NAME="RA45407ST-12B">12b </A>
Field LD.
Ward AJ.
Turner P.
Aust. J. Chem.
1999,
52:
1085
<A NAME="RA45407ST-13">13 </A> For a review on rhodium-catalyzed cycloadditions, see:
Robinson JE. In Modern Rhodium-Catalyzed Organic Reactions
Evans PA.
Wiley-VCH;
Weinheim:
2005.
p.241
For rhodium-catalyzed intermolecular [2+2+2] cycloadditions of alkynes involving rhodium
clusters, see:
<A NAME="RA45407ST-14A">14a </A>
Baidossi W.
Goren N.
Blum J.
J. Mol. Catal.
1993,
85:
153
Involving dirhodium(II) perfluorobutyrate, see:
<A NAME="RA45407ST-14B">14b </A>
Doyle MP.
Shanklin MS.
Organometallics
1994,
13:
1081
Involving dirhodaboranes, see:
<A NAME="RA45407ST-14C">14c </A>
Yan H.
Beatty AM.
Fehlner TP.
Organometallics
2002,
21:
5029
<A NAME="RA45407ST-15">15 </A>
Tanaka K.
Shirasaka K.
Org. Lett.
2003,
5:
4697
<A NAME="RA45407ST-16">16 </A>
Tanaka K.
Toyoda K.
Wada A.
Shirasaka K.
Hirano M.
Chem. Eur. J.
2005,
11:
1145
<A NAME="RA45407ST-17">17 </A>
Saito T.
Yokozawa T.
Ishizaki T.
Moroi T.
Sayo N.
Miura T.
Kumobayashi H.
Adv. Synth. Catal.
2001,
343:
264
<A NAME="RA45407ST-18">18 </A>
Zhang X.
Mashima K.
Koyano K.
Sayo N.
Kumobayashi H.
Akutagawa S.
Takaya H.
Tetrahedron Lett.
1991,
32:
7283
For examples of transition-metal-catalyzed, complete intermolecular cross-[2+2+2]
cycloadditions of alkynes, see:
<A NAME="RA45407ST-19A">19a </A>
Ura Y.
Sato Y.
Tsujita H.
Kondo T.
Imachi M.
Mitsudo T.
J. Mol. Catal. A: Chem.
2005,
239:
166
<A NAME="RA45407ST-19B">19b </A>
Ura Y.
Sato Y.
Shiotsuki M.
Kondo T.
Mitsudo T.
J. Mol. Catal. A: Chem.
2004,
209:
35
<A NAME="RA45407ST-19C">19c </A>
Takeuchi R.
Nakaya Y.
Org. Lett.
2003,
5:
3659
<A NAME="RA45407ST-19D">19d </A>
Mori N.
Ikeda S.-I.
Odashima K.
Chem. Commun.
2001,
181
<A NAME="RA45407ST-19E">19e </A>
Dieck TH.
Munz C.
Müller C.
J. Organomet. Chem.
1990,
384:
243
<A NAME="RA45407ST-19F">19f </A>
Abdulla K.
Booth BL.
Stacey C.
J. Organomet. Chem.
1985,
293:
103
<A NAME="RA45407ST-20">20 </A>
Tanaka K.
Nishida G.
Ogino M.
Hirano M.
Noguchi K.
Org. Lett.
2005,
7:
3119
<A NAME="RA45407ST-21A">21a </A>
Boñaga LVR.
Zhang H.-C.
Moretto AF.
Ye H.
Gautheir DA.
Li J.
Leo GC.
Maryanoff BE.
J. Am. Chem. Soc.
2005,
127:
3473
<A NAME="RA45407ST-21B">21b </A>
Boñaga LVR.
Zhang H.-C.
Maryanoff BE.
Chem. Commun.
2004,
2394
<A NAME="RA45407ST-21C">21c </A>
Boñaga LVR.
Zhang H.-C.
Gautheir DA.
Reddy I.
Maryanoff BE.
Org. Lett.
2003,
5:
4537
<A NAME="RA45407ST-21D">21d </A>
Moretto AF.
Zhang H.-C.
Maryanoff BE.
J. Am. Chem. Soc.
2001,
123:
3157
<A NAME="RA45407ST-22">22 </A>
Tanaka K.
Sagae H.
Toyoda K.
Noguchi K.
Eur. J. Org. Chem.
2006,
3575
For recent reviews on the synthesis of nitrogen heterocycles by transition-metal-catalyzed
[2+2+2] cycloadditions, see:
<A NAME="RA45407ST-23A">23a </A>
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
<A NAME="RA45407ST-23B">23b </A>
Varela JA.
Saá C.
Chem. Rev.
2003,
103:
3787
For examples of transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with
isocyanates using cobalt catalysts, see:
<A NAME="RA45407ST-24A">24a </A>
Hong P.
Yamazaki H.
Synthesis
1977,
50
<A NAME="RA45407ST-24B">24b </A>
Hong P.
Yamazaki H.
Tetrahedron Lett.
1977,
1333
<A NAME="RA45407ST-24C">24c </A>
Earl RA.
Vollhardt KPC.
J. Org. Chem.
1984,
49:
4786
<A NAME="RA45407ST-24D">24d </A>
Diversi P.
Ingrosso G.
Lucherini A.
Malquori S.
J. Mol. Catal.
1987,
40:
267
Using nickel catalysts, see:
<A NAME="RA45407ST-24E">24e </A>
Hoberg H.
Oster BW.
Synthesis
1982,
324
<A NAME="RA45407ST-24F">24f </A>
Hoberg H.
Oster BW.
J. Organomet. Chem.
1982,
234:
C35
<A NAME="RA45407ST-24G">24g </A>
Hoberg H.
Oster BW.
J. Organomet. Chem.
1983,
252:
359
<A NAME="RA45407ST-24H">24h </A>
Duong HA.
Cross MJ.
Louie J.
J. Am. Chem. Soc.
2004,
126:
11438
<A NAME="RA45407ST-24I">24i </A>
Duong HA.
Louie J.
Tetrahedron
2006,
62:
7552
Using ruthenium catalysts, see:
<A NAME="RA45407ST-24J">24j </A>
Yamamoto Y.
Takagishi H.
Itoh K.
Org. Lett.
2001,
3:
2117
<A NAME="RA45407ST-24K">24k </A>
Yamamoto Y.
Kinpara K.
Saigoku T.
Takagishi H.
Okuda S.
Nishiyama H.
Itoh K.
J. Am. Chem. Soc.
2005,
127:
605
For examples of rhodium-catalyzed [2+2+2] cycloadditions of alkynes with isocyanates,
see:
<A NAME="RA45407ST-25A">25a </A>
Flynn ST.
Hasso-Henderson SE.
Parkins AW.
J. Mol. Catal.
1985,
32:
101
<A NAME="RA45407ST-25B">25b </A>
Yu RT.
Rovis T.
J. Am. Chem. Soc.
2006,
128:
2782
<A NAME="RA45407ST-25C">25c </A>
Yu RT.
Rovis T.
J. Am. Chem. Soc.
2006,
128:
12370
<A NAME="RA45407ST-25D">25d </A>
Kondo T.
Nomura M.
Ura Y.
Wada K.
Mitsudo T.
Tetrahedron Lett.
2006,
47:
7107
<A NAME="RA45407ST-26">26 </A>
Tanaka K.
Wada A.
Noguchi K.
Org. Lett.
2005,
7:
4737
<A NAME="RA45407ST-27">27 </A>
Tanaka K.
Wada A.
Noguchi K.
Org. Lett.
2006,
8:
907
For examples of transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with
isothiocyanates using cobalt catalysts, see:
<A NAME="RA45407ST-28A">28a </A>
Wakatsuki Y.
Yamazaki H.
J. Chem. Soc., Chem. Commun.
1973,
280
Using ruthenium catalysts, see:
<A NAME="RA45407ST-28B">28b </A>
Yamamoto Y.
Takagishi H.
Itoh K.
J. Am. Chem. Soc.
2002,
124:
28
<A NAME="RA45407ST-29">29 </A>
Beesley RM.
Ingold CK.
Thorpe JF.
J. Chem. Soc.
1915,
1080
For pioneering work on transition-metal-catalyzed [2+2+2] cycloadditions of alkynes
with nitriles, see:
<A NAME="RA45407ST-30A">30a </A>
Wakatsuki Y.
Yamazaki H.
J. Chem. Soc., Dalton Trans.
1978,
1278
<A NAME="RA45407ST-30B">30b </A>
Bönnemann H.
Brinkmann R.
Synthesis
1975,
600
<A NAME="RA45407ST-30C">30c </A>
Bönnemann H.
Angew. Chem., Int. Ed. Engl.
1978,
17:
505
<A NAME="RA45407ST-30D">30d </A>
See also reference 28a.
For pioneering work on cobalt-catalyzed [2+2+2] cycloadditions of α,ω-diynes with
nitriles, and of cyanoalkynes with monoalkynes, see:
<A NAME="RA45407ST-31A">31a </A>
Naiman A.
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1977,
16:
708
<A NAME="RA45407ST-31B">31b </A>
Brien DJ.
Naiman A.
Vollhardt KPC.
J. Chem. Soc., Chem. Commun.
1982,
133
<A NAME="RA45407ST-31C">31c </A>
Parnell CA.
Vollhardt KPC.
Tetrahedron
1985,
41:
5791
For selected recent examples of transition-metal-catalyzed [2+2+2] cycloadditions
of alkynes with nitriles using cobalt(I) catalysts, see:
<A NAME="RA45407ST-32A">32a </A>
Fatland AW.
Eaton BE.
Org. Lett.
2000,
2:
3131
<A NAME="RA45407ST-32B">32b </A>
Heller B.
Sundermann B.
Buschmann H.
Drexler H.-J.
You J.
Holzgrabe U.
Heller E.
Oehme G.
J. Org. Chem.
2002,
67:
4414
<A NAME="RA45407ST-32C">32c </A>
Gutnov A.
Abaev V.
Redkin D.
Fischer C.
Bonrath W.
Heller B.
Synlett
2005,
1188
<A NAME="RA45407ST-32D">32d </A>
Groth U.
Huhn T.
Kesenheimer C.
Kalogerakis A.
Synlett
2005,
1758
<A NAME="RA45407ST-32E">32e </A>
Hrdina R.
Stará I.
Dufková L.
Mitchel S.
Cisarová I.
Kotora M.
Tetrahedron
2006,
62:
968
<A NAME="RA45407ST-32F">32f </A>
Zhou Y.
Porco JA.
Snyder JK.
Org. Lett.
2007,
9:
393
<A NAME="RA45407ST-32G">32g </A>
Chang H.-T.
Jeganmohan M.
Cheng C.-H.
Org. Lett.
2007,
9:
505
<A NAME="RA45407ST-32H">32h </A>
Kase K.
Goswami A.
Ohtaki K.
Tanabe E.
Saino N.
Okamoto S.
Org. Lett.
2007,
9:
931
Using ruthenium(II) catalysts, see:
<A NAME="RA45407ST-32I">32i </A>
Yamamoto Y.
Okuda S.
Itoh K.
Chem. Commun.
2001,
1102
<A NAME="RA45407ST-32J">32j </A>
Yamamoto Y.
Ogawa R.
Itoh K.
J. Am. Chem. Soc.
2001,
123:
6189
<A NAME="RA45407ST-32K">32k </A>
Varela JA.
Castedo L.
Saà C.
J. Org. Chem.
2003,
68:
8595
<A NAME="RA45407ST-32L">32l </A>
Yamamoto Y.
Kinpara K.
Nishiyama H.
Itoh K.
Adv. Synth. Catal.
2005,
347:
1913
<A NAME="RA45407ST-32M">32m </A>
Yamamoto Y.
Kinpara K.
Ogawa R.
Nishiyama H.
Itoh K.
Chem. Eur. J.
2006,
12:
5618
Using nickel(0) catalysts, see:
<A NAME="RA45407ST-32N">32n </A>
McCormick MM.
Duong HA.
Zuo G.
Louie J.
J. Am. Chem. Soc.
2005,
127:
5030
<A NAME="RA45407ST-32O">32o </A>
Takevec TN.
Zuo G.
Simon K.
Louie J.
J. Org. Chem.
2006,
71:
5834
For examples of rhodium-catalyzed [2+2+2] cycloadditions of alkynes with nitriles,
see:
<A NAME="RA45407ST-33A">33a </A>
Cioni P.
Diversi P.
Ingrosso G.
Lucherini A.
Ronca P.
J. Mol. Catal.
1987,
40:
337
<A NAME="RA45407ST-33B">33b </A>
Cioni P.
Diversi P.
Ingrosso G.
Lucherini A.
Ronca P.
J. Mol. Catal.
1987,
40:
359
<A NAME="RA45407ST-34">34 </A>
Tanaka K.
Suzuki N.
Nishida G.
Eur. J. Org. Chem.
2006,
3917
<A NAME="RA45407ST-35">35 </A>
Grigg R.
Scott R.
Stevenson P.
J. Chem. Soc., Perkin Trans. 1
1988,
1365
For a recent review on atroposelective synthesis of axially chiral biaryls, see:
<A NAME="RA45407ST-36A">36a </A>
Bringmann G.
Mortimer AJP.
Keller PA.
Gresser MJ.
Garner J.
Breuning M.
Angew. Chem. Int. Ed.
2005,
44:
5384
For naturally occurring biaryls, see:
<A NAME="RA45407ST-36B">36b </A>
Bringmann G.
Günther C.
Ochse M.
Schupp O.
Tasler S. In Progress in the Chemistry of Organic Natural Products
Vol. 82:
Herz W.
Falk H.
Kirby GW.
Moore RE.
Springer;
Vienna:
2001.
p.1
For chirality exchange from sp3 central chirality to axial chirality, see:
<A NAME="RA45407ST-37A">37a </A>
Nishii Y.
Wakasugi K.
Koga K.
Tanabe Y.
J. Am. Chem. Soc.
2004,
126:
5358
For a reaction of two chromium carbenes connected with chiral tether with a 1,3-diyne,
see:
<A NAME="RA45407ST-37B">37b </A>
Bao J.
Wulff WD.
Fumo MJ.
Grant EB.
Heller DP.
Whitcomb MC.
Yeung S.-M.
J. Am. Chem. Soc.
1996,
118:
2166
<A NAME="RA45407ST-38">38 </A> For pioneering work on the synthesis of biaryls by [2+2+2] cycloadditions of
alkynes, see:
Sato Y.
Ohashi K.
Mori M.
Tetrahedron Lett.
1999,
40:
5231
<A NAME="RA45407ST-39">39 </A>
Tanaka K.
Nishida G.
Wada A.
Noguchi K.
Angew. Chem. Int. Ed.
2004,
43:
6510
<A NAME="RA45407ST-40">40 </A>
Gutnov A.
Heller B.
Fischer C.
Drexler H.-J.
Spannenberg A.
Sundermann B.
Sundermann C.
Angew. Chem. Int. Ed.
2004,
43:
3795
<A NAME="RA45407ST-41">41 </A>
Shibata T.
Fujimoto T.
Yokota K.
Takagi K.
J. Am. Chem. Soc.
2004,
126:
8382
For a review on chiral biaryl-type bisphosphine ligands, see:
<A NAME="RA45407ST-42A">42a </A>
Shimizu H.
Nagasaki I.
Saito T.
Tetrahedron
2005,
61:
5405
For an account of chiral biaryl-type monophosphine ligands, see:
<A NAME="RA45407ST-42B">42b </A>
Hayashi T.
Acc. Chem. Res.
2000,
33:
354
<A NAME="RA45407ST-43">43 </A> For a recent review, see:
Wallace TW.
Org. Biomol. Chem.
2006,
4:
3197
<A NAME="RA45407ST-44">44 </A> For the synthesis of axially chiral biaryl phosphonates through asymmetric Suzuki
cross-coupling, see:
Yin J.
Buchwald SL.
J. Am. Chem. Soc.
2000,
122:
12051
<A NAME="RA45407ST-45">45 </A>
Nishida G.
Suzuki N.
Noguchi K.
Tanaka K.
Org. Lett.
2006,
8:
3489
<A NAME="RA45407ST-46A">46a </A>
Yamamoto Y.
Hata K.
Arakawa T.
Itoh K.
Chem. Commun.
2003,
1290
<A NAME="RA45407ST-46B">46b </A>
Yamamoto Y.
Saigoku T.
Ohgai T.
Nishiyama H.
Itoh K.
Chem. Commun.
2004,
2702
<A NAME="RA45407ST-46C">46c </A>
Yamamoto Y.
Saigoku T.
Nishiyama H.
Ohgai T.
Itoh K.
Org. Biomol. Chem.
2005,
3:
1768
<A NAME="RA45407ST-46D">46d </A>
See also references 9c and 11e.
<A NAME="RA45407ST-47">47 </A>
Tanaka K.
Suda T.
Noguchi K.
Hirano M.
J. Org. Chem.
2007,
72:
2243
<A NAME="RA45407ST-48A">48a </A>
Kitagawa O.
Yoshikawa M.
Tanabe H.
Morita T.
Takahashi M.
Dobashi Y.
Taguchi T.
J. Am. Chem. Soc.
2006,
128:
12923
<A NAME="RA45407ST-48B">48b </A>
Kitagawa O.
Takahashi M.
Yoshikawa M.
Taguchi T.
J. Am. Chem. Soc.
2005,
127:
3676
<A NAME="RA45407ST-48C">48c </A>
Kitagawa O.
Kohriyama M.
Taguchi T.
J. Org. Chem.
2002,
67:
8682
<A NAME="RA45407ST-48D">48d </A>
Terauchi J.
Curran DP.
Tetrahedron: Asymmetry
2003,
14:
587
<A NAME="RA45407ST-49">49 </A>
For RhCl(PPh3 )3 -catalyzed [2+2+2] cycloadditions involving alkynamides, see refs 11h, 11i, and 11q.
<A NAME="RA45407ST-50">50 </A>
Tanaka K.
Takeishi K.
Noguchi K.
J. Am. Chem. Soc.
2006,
128:
4586
<A NAME="RA45407ST-51">51 </A> For the synthesis of racemic phosphorus-containing biaryls via the Diels-Alder
reaction using phosphorus-containing dienophiles, see:
Ashburn BO.
Carter RG.
Angew. Chem. Int. Ed.
2006,
45:
6737
<A NAME="RA45407ST-52">52 </A> Very recently, Heller and co-workers have reported the synthesis of phosphorus-bearing,
axially chiral biaryls by cobalt-catalyzed, asymmetric cross-cyclotrimerization, but
both yields and ee values are not sufficient, see:
Heller B.
Gutnov A.
Fischer C.
Drexler H.-J.
Spannenberg A.
Redkin D.
Sundermann C.
Sundermann B.
Chem. Eur. J.
2007,
13:
1117
<A NAME="RA45407ST-53">53 </A>
Nishida G.
Noguchi K.
Hirano M.
Tanaka K.
Angew. Chem. Int. Ed.
2007,
46:
3951
<A NAME="RA45407ST-54">54 </A> Buchwald and co-workers recently reported that the substituents ortho to the phosphorus center of achiral biaryl monophosphines may lock the ligand into
a certain conformation, which plays an important role in the palladium-catalyzed cross-coupling
reactions, see:
Burgos CH.
Barder TE.
Huang X.
Buchwald SL.
Angew. Chem. Int. Ed.
2006,
45:
4321
For reviews on cyclophanes, see:
<A NAME="RA45407ST-55A">55a </A>
Modern Cyclophane Chemistry
Gleither R.
Hopf H.
Wiley;
Chichester:
2004.
<A NAME="RA45407ST-55B">55b </A>
Cyclophane Chemistry
Vögtle F.
Wiley;
Chichester:
1993.
<A NAME="RA45407ST-56">56 </A> For a review on cyclophane synthesis, see:
Kane VV.
De Wolff WH.
Bickelhaupt F.
Tetrahedron
1994,
50:
4574
<A NAME="RA45407ST-57">57 </A>
Wijsman GW.
de Kanter FJJ.
de Wolf WH.
Bickelhaupt F.
Eur. J. Org. Chem.
2001,
2743
<A NAME="RA45407ST-58">58 </A>
Tanaka K.
Sagae H.
Toyoda K.
Noguchi K.
Hirano M.
J. Am. Chem. Soc.
2007,
129:
1522
<A NAME="RA45407ST-59">59 </A>
For rhodium-catalyzed macrocyclizations to form ortho- and metacyclophanes via intramolecular
[2+2+2] cycloaddition of triynes in an aqueous-organic biphasic system, see reference
11n.
For selected recent examples of the synthesis of planar-chiral [n ]metacyclophanes, see:
<A NAME="RA45407ST-60A">60a </A>
Piatek P.
Kalisiak J.
Jurczak J.
Tetrahedron Lett.
2004,
45:
3309
<A NAME="RA45407ST-60B">60b </A>
Kubik S.
Goddard R.
J. Org. Chem.
1999,
64:
9475
<A NAME="RA45407ST-60C">60c </A>
Grimme S.
Harren J.
Sobanski A.
Vögtle F.
Eur. J. Org. Chem.
1998,
1491
<A NAME="RA45407ST-61">61 </A>
Pugin B,
Martin P,
Mueller M,
Naud F,
Spindler F,
Thommen M,
Melone G, and
Kesselgruber M. inventors; WO 2004089920.
<A NAME="RA45407ST-62">62 </A>
For examples of transesterification in metal-catalyzed [2+2+2] cycloadditions, see
references 19c, 19e, and 19f.
For ruthenium-catalyzed, sequential one-pot transesterification and [2+2+2] cycloaddition
of alkynylboronates, see:
<A NAME="RA45407ST-63A">63a </A>
Yamamoto Y.
Ishi J.
Nishiyama H.
Itoh K.
J. Am. Chem. Soc.
2004,
126:
3712
For its application to the synthesis of phthalides, see:
<A NAME="RA45407ST-63B">63b </A>
Yamamoto Y.
Ishi J.
Nishiyama H.
Itoh K.
J. Am. Chem. Soc.
2005,
127:
9625
<A NAME="RA45407ST-64">64 </A>
Tanaka K.
Osaka T.
Noguchi K.
Hirano M.
Org. Lett.
2007,
9:
1307
<A NAME="RA45407ST-65">65 </A>
For the synthesis of chiral phthalides by RhCl(PPh3 )3 -catalyzed [2+2+2] cycloadditions of ester-linked diynes with acetylene, see references
11k and 11l.
<A NAME="RA45407ST-66A">66a </A>
Chan ASC.
Hu W.
Pai C.-C.
Lau C.-P.
Jiang Y.
Mi A.
Yan M.
Sun J.
Lou R.
Deng J.
J. Am. Chem. Soc.
1997,
119:
9570
<A NAME="RA45407ST-66B">66b </A>
Arai MA.
Arai T.
Sasai H.
Org. Lett.
1999,
1:
1795
<A NAME="RA45407ST-66C">66c </A>
Hu A.-G.
Fu Y.
Xie J.-H.
Zhou H.
Wang L.-X.
Zhou Q.-L.
Angew. Chem. Int. Ed.
2002,
41:
2348
<A NAME="RA45407ST-66D">66d </A>
Xie J.-H.
Wang L.-X.
Fu Y.
Zhu S.-F.
Fan B.-M.
Duan H.-F.
Zhou Q.-L.
J. Am. Chem. Soc.
2003,
125:
4404
<A NAME="RA45407ST-67A">67a </A>
Takahashi T.
Tsutsui H.
Tamura M.
Kitagaki S.
Nakajima M.
Hashimoto S.
Chem. Commun.
2001,
1604
<A NAME="RA45407ST-67B">67b </A>
Tanaka M.
Takahashi M.
Sakamoto E.
Imai M.
Matsui A.
Fujio M.
Sakai K.
Suemune H.
Tetrahedron
2001,
57:
1197
<A NAME="RA45407ST-68">68 </A> Recently Shibata and co-workers used cationic rhodium(I)/modified BINAP complexes
for the enantioselective synthesis of spiro compounds, see:
Tsuchikama K.
Kuwata Y.
Shibata T.
J. Am. Chem. Soc.
2006,
128:
13686
<A NAME="RA45407ST-69">69 </A>
Varela JA.
Castedo L.
Saá C.
Org. Lett.
1999,
1:
2141
<A NAME="RA45407ST-70">70 </A>
Wada A.
Noguchi K.
Hirano M.
Tanaka K.
Org. Lett.
2007,
9:
1295
<A NAME="RA45407ST-71">71 </A> For a selected recent example, see:
Burkinshaw SM.
Griffiths J.
Towns AD.
J. Mater. Chem.
1998,
8:
2677
For our recent publications concerning cationic Rh(I)/modified-BINAP-catalyzed [2+2+2]
cycloadditions, see:
<A NAME="RA45407ST-72A">72a </A>
Tanaka K.
Hara H.
Nishida G.
Hirano M.
Org. Lett.
2007,
9:
1907
<A NAME="RA45407ST-72B">72b </A>
Tanaka K.
Otake Y.
Wada A.
Hirano M.
Org. Lett.
2007,
9:
2203
<A NAME="RA45407ST-72C">72c </A>
Tanaka K.
Nishida G.
Sagae H.
Hirano M.
Synlett
2007,
1426