Semin Reprod Med 2007; 25(5): 379-387
DOI: 10.1055/s-2007-984744
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Paracrine Control of Gonadotrophs

Stephen J. Winters1 , Joseph P. Moore1
  • 1Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, Kentucky
Further Information

Publication History

Publication Date:
20 August 2007 (online)

ABSTRACT

There is increasing evidence for communication among pituitary cells. Hormone-producing pituitary cells may communicate with each other and with folliculostellate cells. The latter cells surround pituitary hormone-producing cells and are connected by tight junctions to form a network that allows for their coordinated function. Folliculostellate cells are targets of cytokines, peptides, and steroid hormones, and produce growth factors and cytokines, including follistatin, the dynamic regulator of follicle-stimulating hormone (FSH) production that binds activin, and limits activin signaling. Pituitary adenylate cyclase-activating peptide (PACAP) and its receptor are found in folliculostellate cells in which they stimulate transcription of the follistatin gene through cyclic adenosine monophosphate/protein kinase A (PKA) signaling. When PACAP increases, follistatin levels increase, and FSH-β mRNA is reduced. PACAP also activates gonadotrophs to stimulate transcription of the gonadotropin α-subunit gene and lengthen the LH-β mRNA, presumably to prolong it half-life, and increases responsiveness to GnRH. Accordingly, PACAP differentially regulates FSH and LH, and may prove to be a key player in reproduction through a novel paracrine mechanism.

REFERENCES

  • 1 Mason A J, Hayflick J S, Zoeller R T et al.. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse.  Science. 1986;  234 1366-1371
  • 2 Tsai P S, Gill J C. Mechanisms of disease: insights into X-linked and autosomal-dominant Kallmann syndrome.  Nat Clin Pract Endocrinol Metab. 2006;  2 160-171
  • 3 Beranova M, Oliveira L M, Bedecarrats G Y et al.. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism.  J Clin Endocrinol Metab. 2001;  86 1580-1588
  • 4 Yuen T, Wurmbach E, Ebersole B J, Ruf F, Pfeffer R L, Sealfon S C. Coupling of GnRH concentration and the GnRH receptor-activated gene program.  Mol Endocrinol. 2002;  16 1145-1153
  • 5 Billiard J. Functional heterogeneity of pituitary gonadotropes in response to a variety of neuromodulators.  Mol Cell Endocrinol. 1996;  123 163-170
  • 6 Stojilkovic S S, Iida T, Cesnjaj M, Catt K J. Differential actions of endothelin and gonadotropin-releasing hormone in pituitary gonadotrophs.  Endocrinology. 1992;  131 2821-2828
  • 7 Tsujii T, Ishizaka K, Winters S J. Effects of pituitary adenylate cyclase-activating polypeptide on gonadotropin secretion and subunit messenger ribonucleic acids in perifused rat pituitary cells.  Endocrinology. 1994;  135 826-833
  • 8 Miyata A, Arimura A, Dahl R R et al.. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells.  Biochem Biophys Res Commun. 1989;  164 567-574
  • 9 Canny B J, Rawlings S R, Leong D A. Pituitary adenylate cyclase-activating polypeptide specifically increases cytosolic calcium ion concentration in rat gonadotropes and somatotropes.  Endocrinology. 1992;  130 211-215
  • 10 Tsujii T, Winters S J. Effects of pulsatile pituitary adenylate cyclase activating polypeptide (PACAP) on gonadotropin secretion and subunit mRNA levels in perifused rat pituitary cells.  Life Sci. 1995;  56 1103-1111
  • 11 Leupen S M, Levine J E. Role of protein kinase C in facilitation of luteinizing hormone (LH)-releasing hormone-induced LH surges by neuropeptide Y.  Endocrinology. 1999;  140 3682-3687
  • 12 Parker S L, Kalra S P, Crowley W R. Neuropeptide Y modulates the binding of a gonadotropin-releasing hormone (GnRH) analog to anterior pituitary GnRH receptor sites.  Endocrinology. 1991;  128 2309-2316
  • 13 Pincas H, Laverriere J N, Counis R. Pituitary adenylate cyclase-activating polypeptide and cyclic adenosine 3′,5′-monophosphate stimulate the promoter activity of the rat gonadotropin-releasing hormone receptor gene via a bipartite response element in gonadotrope-derived cells.  J Biol Chem. 2001;  276 23562-23571
  • 14 Morel G, Chabot J G, Dubois P M. Ultrastructural evidence for oxytocin in the rat anterior pituitary gland.  Acta Endocrinol (Copenh). 1988;  117 307-314
  • 15 Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P. Hidden face of the anterior pituitary.  Trends Endocrinol Metab. 2002;  13 304-309
  • 16 Nakajima T, Yamaguchi H, Takahashi K. S100 protein in folliculostellate cells of the rat pituitary anterior lobe.  Brain Res. 1980;  191 523-531
  • 17 Allaerts W, Jeucken P H, Debets R, Hoefakker S, Claassen E, Drexhage H A. Heterogeneity of pituitary folliculo-stellate cells: implications for interleukin-6 production and accessory function in vitro.  J Neuroendocrinol. 1997;  9 43-53
  • 18 Inoue K, Couch E F, Takano K, Ogawa S. The structure and function of folliculo-stellate cells in the anterior pituitary gland.  Arch Histol Cytol. 1999;  62 205-218
  • 19 Kurotani R, Tahara S, Sanno N et al.. Expression of Ptx1 in the adult rat pituitary glands and pituitary cell lines: hormone-secreting cells and folliculo-stellate cells.  Cell Tissue Res. 1999;  298 55-61
  • 20 Yamashita M, Qian Z R, Sano T, Horvath E, Kovacs K. Immunohistochemical study on so-called follicular cells and folliculostellate cells in the human adenohypophysis.  Pathol Int. 2005;  55 244-247
  • 21 Kawakami S, Fujii Y, Okada Y, Winters S J. Paracrine regulation of FSH by follistatin in folliculostellate cell-enriched primate pituitary cell cultures.  Endocrinology. 2002;  143 2250-2258
  • 22 Bergland R M, Torack R M. An ultrastructural study of follicular cells in the human anterior pituitary.  Am J Pathol. 1969;  57 273-297
  • 23 Saez J C, Berthoud V M, Branes M C, Martinez A D, Beyer E C. Plasma membrane channels formed by connexins: their regulation and functions.  Physiol Rev. 2003;  83 1359-1400
  • 24 Fauquier T, Guerineau N C, McKinney R A, Bauer K, Mollard P. Folliculostellate cell network: a route for long-distance communication in the anterior pituitary.  Proc Natl Acad Sci USA. 2001;  98 8891-8896
  • 25 Evans W H, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight.  Biochem J. 2006;  397 1-14
  • 26 Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells.  Semin Liver Dis. 2001;  21 311-335
  • 27 Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A. Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor.  Endocrinology. 1992;  131 3110-3116
  • 28 Bilezikjian L M, Leal A M, Blount A L, Corrigan A Z, Turnbull A V, Vale W W. Rat anterior pituitary folliculostellate cells are targets of interleukin-1beta and a major source of intrapituitary follistatin.  Endocrinology. 2003;  144 732-740
  • 29 Danila D C, Zhang X, Zhou Y et al.. A human pituitary tumor-derived folliculostellate cell line.  J Clin Endocrinol Metab. 2000;  85 1180-1187
  • 30 Lloyd R V, Qian X, Jin L et al.. Analysis of pituitary cells by laser capture microdissection.  Methods Mol Biol. 2005;  293 233-241
  • 31 Hentges S, Boyadjieva N, Sarkar D K. Transforming growth factor-beta3 stimulates lactotrope cell growth by increasing basic fibroblast growth factor from folliculo-stellate cells.  Endocrinology. 2000;  141 859-867
  • 32 Kabir N, Chaturvedi K, Liu L S, Sarkar D K. Transforming growth factor-beta3 increases gap-junctional communication among folliculostellate cells to release basic fibroblast growth factor.  Endocrinology. 2005;  146 4054-4060
  • 33 Raber J, O'Shea R D, Bloom F E, Campbell I L. Modulation of hypothalamic-pituitary-adrenal function by transgenic expression of interleukin-6 in the CNS of mice.  J Neurosci. 1997;  17 9473-9480
  • 34 Schwartz J, Ray D W, Perez F M. Leukemia inhibitory factor as an intrapituitary mediator of ACTH secretion.  Neuroendocrinology. 1999;  69 34-43
  • 35 Watanobe H, Yoneda M. A significant participation of leukemia inhibitory factor in regulating the reproductive function in rats: a novel action of the pleiotropic cytokine.  Biochem Biophys Res Commun. 2001;  282 643-646
  • 36 Jones K L, de Kretser D M, Patella S, Phillips D J. Activin A and follistatin in systemic inflammation.  Mol Cell Endocrinol. 2004;  225 119-125
  • 37 Shao L, Frigon Jr N L, Sehy D W et al.. Regulation of production of activin A in human marrow stromal cells and monocytes.  Exp Hematol. 1992;  20 1235-1242
  • 38 Kawakami S, Fujii Y, Winters S J. Follistatin production by skin fibroblasts and its regulation by dexamethasone.  Mol Cell Endocrinol. 2001;  172 157-167
  • 39 Welt C K. Regulation and function of inhibins in the normal menstrual cycle.  Semin Reprod Med. 2004;  22 187-193
  • 40 Anawalt B D, Bebb R A, Matsumoto A M et al.. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction.  J Clin Endocrinol Metab. 1996;  81 3341-3345
  • 41 Farnworth P G. Gonadotrophin secretion revisited. How many ways can FSH leave a gonadotroph?.  J Endocrinol. 1995;  145 387-395
  • 42 Uccella S, La Rosa S, Genasetti A, Capella C. Localization of inhibin/activin subunits in normal pituitary and in pituitary adenomas.  Pituitary. 2000;  3 131-139
  • 43 Mathews L S. Activin receptors and cellular signaling by the receptor serine kinase family.  Endocr Rev. 1994;  15 310-325
  • 44 Hoodless P A, Wrana J L. Mechanism and function of signaling by the TGF beta superfamily.  Curr Top Microbiol Immunol. 1998;  228 235-272
  • 45 Attisano L, Wrana J L. Mads and Smads in TGF beta signalling.  Curr Opin Cell Biol. 1998;  10 188-194
  • 46 Massague J, Chen Y G. Controlling TGF-beta signaling.  Genes Dev. 2000;  14 627-644
  • 47 Lewis K A, Gray P C, Blount A L et al.. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.  Nature. 2000;  404 411-414
  • 48 Phillips D J, de Kretser D M. Follistatin: a multifunctional regulatory protein.  Front Neuroendocrinol. 1998;  19 287-322
  • 49 Lee B L, Unabia G, Childs G. Expression of follistatin mRNA by somatotropes and mammotropes early in the rat estrous cycle.  J Histochem Cytochem. 1993;  41 955-960
  • 50 Bilezikjian L M, Corrigan A Z, Blount A L, Vale W W. Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors.  Endocrinology. 1996;  137 4277-4284
  • 51 Kaiser U B, Chin W W. Regulation of follistatin messenger ribonucleic acid levels in the rat pituitary.  J Clin Invest. 1993;  91 2523-2531
  • 52 Dalkin A C, Haisenleder D J, Gilrain J T, Aylor K, Yasin M, Marshall J C. Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic acids (mRNAs) in male and female rats: evidence for inhibin regulation of follistatin mRNA in females.  Endocrinology. 1998;  139 2818-2823
  • 53 Winters S J, Kawakami S, Sahu A, Plant T M. Pituitary follistatin and activin gene expression, and the testicular regulation of FSH in the adult Rhesus monkey (Macaca mulatta).  Endocrinology. 2001;  142 2874-2878
  • 54 Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction.  Front Neuroendocrinol. 1995;  16 53-88
  • 55 Culler M D, Paschall C S. Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates the gonadotropin-releasing activity of luteinizing hormone-releasing hormone.  Endocrinology. 1991;  129 2260-2262
  • 56 Tsujii T, Attardi B, Winters S J. Regulation of alpha-subunit mRNA transcripts by pituitary adenylate cyclase-activating polypeptide (PACAP) in pituitary cell cultures and alpha T3-1 cells.  Mol Cell Endocrinol. 1995;  113 123-130
  • 57 Winters S J, Dalkin A C, Tsujii T. Evidence that pituitary adenylate cyclase activating polypeptide suppresses follicle-stimulating hormone-beta messenger ribonucleic acid levels by stimulating follistatin gene transcription.  Endocrinology. 1997;  138 4324-4329
  • 58 Attardi B, Winters S J. Transcriptional regulation of the glycoprotein hormone alpha-subunit gene by pituitary adenylate cyclase-activating polypeptide (PACAP) in alphaT3-1 cells.  Mol Cell Endocrinol. 1998;  137 97-107
  • 59 Moore Jr J P, Burger L L, Dalkin A C, Winters S J. Pituitary adenylate cyclase activating polypeptide messenger RNA in the paraventricular nucleus and anterior pituitary during the rat estrous cycle.  Biol Reprod. 2005;  73 491-499
  • 60 Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy D H, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes.  Endocrinology. 1991;  129 2787-2789
  • 61 Moore Jr J P, Wilson L, Dalkin A C, Winters S J. Differential expression of the pituitary gonadotropin subunit genes during male rat sexual maturation: reciprocal relationship between hypothalamic pituitary adenylate cyclase-activating polypeptide and follicle-stimulating hormone beta expression.  Biol Reprod. 2003;  69 234-241

Stephen J Winters

Division of Endocrinology, Metabolism and Diabetes, ACB-A3G11

550 Jackson Street, Louisville, KY 40202

Email: sjwint01@louisville.edu