RSS-Feed abonnieren
DOI: 10.1055/s-2007-984918
Improved and Practical Procedures for the Preparation of Highly Substituted Pyridines and Pyridazines via Silica-Mediated Aromatisation
Publikationsverlauf
Publikationsdatum:
23. Juli 2007 (online)
Abstract
A new and straightforward procedure is described for the preparation of highly substituted pyridines and pyridazines. The method involves a Diels-Alder/retro-Diels-Alder sequence leading to dihydropyridine or related intermediates, which can be aromatized to pyridines and pyridazines by treatment with silica gel. The value of this procedure has been demonstrated with a one-step synthesis of an E-ring-modified steroid.
Key words
Diels-Alder reaction - heterocycles - pyridines - pyridazines - fused-ring systems - silica-mediated aromatization
- For recent references, see:
-
1a
Bagley MC.Glover C. Tetrahedron 2006, 62: 66 -
1b
Belhadj T.Nowicki C.Moody CJ. Synlett 2006, 3033 -
1c
Kozhevnikov VN.Kozhevnikov DN.Shabunina OV.Rusinov VL.Chupakhin ON. Tetrahedron Lett. 2005, 46: 1521 -
1d
Kozhevnikov VN.Kozhevnikov DN.Shabunina OV.Rusinov VL.Chupakhin ON. Tetrahedron Lett. 2005, 46: 1791 -
1e
Altuna-Urquijo M.Stanforth SP.Tarbit B. Tetrahedron Lett. 2005, 46: 6111 ; and references therein -
2a
Raw SA.Taylor RJK. Chem. Commun. 2004, 508 -
2b
Fernandez Sainz Y.Raw SA.Taylor RJK. J. Org. Chem. 2005, 70: 10086 -
2c
Laphookhieo S.Jones S.Raw SA.Fernández Sainz Y.Taylor RJK. Tetrahedron Lett. 2006, 47: 3865 -
2d See also (pyridazine synthesis)
Geyelin PH.Raw SA.Taylor RJK. ARKIVOC 2007, (xi): 37 - For recent applications of triazines, see:
-
3a
Vzorov AN.Bhattacharyya D.Marzilli LG.Compans RW. Antiviral Res. 2005, 65: 57 -
3b
Wang X.-L.Chao H.Li H.Hong X.-L.Liu Y.-J.Tan L.-F.Ji L.-N. Inorg. Biochem. 2004, 98: 1143 -
3c
Hudson MJ.Drew MGB.Foreman MRStJ.Hill C.Huet N.Madic C.Youngs TGA. Dalton Trans. 2003, 1675 -
3d
Abdel-Rahman RM. Pharmazie 2001, 56: 195 -
3e
Croot PL.Hunter KA. Anal. Chim. Acta 2000, 406: 289 -
4a
Boger DL.Weinreb SN. Hetero Diels-Alder Methodology in Organic Synthesis Academic Press; London: 1987. Chap. 10. p.300 -
4b
Boger DL. Chem. Rev. 1986, 86: 781 -
4c
Boger DL. Tetrahedron 1983, 39: 2869 -
4d
Boger DL.Panek JS. J. Org. Chem. 1981, 46: 2179 -
4e
Boger DL.Panek JS.Meier MM. J. Org. Chem. 1982, 47: 895 - 5
Chenard BL.Ronau RT.Schulte GA. J. Org. Chem. 1988, 53: 5175 - 7
Banerjee AK.Laya MS.Vera WJ. Russ. Chem. Rev. 2001, 70: 971 -
9a
Helm MD.Moore JE.Plant A.Harrity JPA. Angew. Chem. Int. Ed. 2005, 44: 3889 -
9b
Atfah MA. J. Heterocycl. Chem. 1989, 26: 717 - 10
Fischer DS.Allan GM.Bubert C.Vicker N.Smith A.Tutill HJ.Wood APL.Packham G.Mahon MF.Reed MJ.Potter BVL. J. Med. Chem. 2005, 48: 5749 ; and references therein
References and Notes
Representative Procedure
A suspension of triazine 1a (50 mg, 0.21 mmol), pyrrolidine (6, 26 µL, 0.31 mmol), cyclopentanone (2a, 27 µL, 0.31 mmol) and silica (Fluka, flash chromatography silica gel 60, 220-440 mesh, 200 mg) in toluene (4 mL) was heated under reflux for 5 h. The reaction mixture was cooled to r.t., diluted with EtOAc (6 mL), and stirred an additional 20 min at the same temperature. The mixture was then filtered through a Celite pad, concentrated and the residue obtained was eluted from a column of silica (PE-EtOAc, 5:1) yielding the desired pyridine 5a (57 mg, 99%); data were consistent with those reported in ref. 2b.
Similar reactions were carried out in which the silica gel was replaced by stoichiometric amounts of HCl, MeCOOH, Et3N, or 1,5-diazabicyclo[4.3.0]non-5-ene (DBU). None of these reactions produced pyridines 5 in significant quantities.
11The structure of the cycloaddition product 10 was assigned using NOE and HMBC NMR experiments.
12A solution of triazine 1a (100 mg, 0.43 mmol), pyrrolidine (6, 52 µL, 0.64 mmol) and estrone (9) (113 mg, 0.42 mmol) in xylene (4 mL) was heated in a screwcapped tube at 160 °C for 10 h. The reaction mixture was cooled to r.t., silica (Fluka, flash chromatography silica gel 60, 220-440 mesh) was added and the yellow suspension obtained refluxed for an additional 5 h. The mixture was then cooled to r.t., filtered through a Celite pad, concentrated and the residue obtained was eluted from a column of silica (CHCl3-EtOAc, 7:1) yielding the desired 3-hydroxy-estra-1,3,5 (10)-triene-[17,16-c]-(2′-pyrid-2-yl)-(6′-phenyl)-pyridine (10, 129 mg, 67%) as a white solid, mp 261-262 °C (toluene-hexane); [α]D 25 -50.0 (c 0.5, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.71 (1 H, ddd, J = 0.9, 1.8, 4.8 Hz, C-9′-H), 8.43 (1 H, ddd, J = 0.9, 1.0, 7.9 Hz, C-12′-H), 8.13 (2 H, m, C-14′-H, C-18′-H), 7.83 (1 H, ddd, J = 1.8, 7.6, 7.9 Hz, C-11′-H), 7.56 (1 H, s, C-5′-H), 7.49 (2 H, m, C-15′-H, C-17′-H), 7.41 (1 H, m, C-16′-H), 7.29 (1 H, ddd, J = 1.0, 4.8, 7.6 Hz, C-10′-H), 7.18 (1 H, d, J = 8.4 Hz, C-1-H), 6.63 (1 H, dd, J = 2.6, 8.4 Hz, C-2-H), 6.57 (1 H, d, J = 2.6 Hz, C-4-H), 4.80 (1 H, s, OH), 3.45 (1 H, dd, J = 5.8, 16.1 Hz, H-12a), 3.04 (1 H, dd, J = 11.9, 16.1 Hz, H-12b), 2.90 (2 H, m, H-6a,b) 2.47 (1 H, m), 2.35 (2 H, m), 2.12 (1 H, m), 1.77 (4 H, m), 1.50 (1 H, m), 1.07 (3 H, s, CH3). 13C NMR (100 MHz, CDCl3): δ = 166.2, 158.6, 155.2, 153.8, 151.6, 148.5, 140.0, 138.71, 136.7, 136.4, 132.3, 128.6, 127.1, 126.3, 123.6, 122.9, 115.4, 113.3, 112.9, 56.1, 45.8, 44.3, 37.8, 34.6, 32.2, 29.6, 27.7, 26.4, 19.0. MS (EI): m/z (%) = 459.2 (100) [M + 1]. HRMS (EI): m/z calcd for C32H31N2O [M + 1]: 459.2436; found: 459.2431 (-3.2 ppm error).