References and Notes
For recent references, see:
1a
Bagley MC.
Glover C.
Tetrahedron
2006,
62:
66
1b
Belhadj T.
Nowicki C.
Moody CJ.
Synlett
2006,
3033
1c
Kozhevnikov VN.
Kozhevnikov DN.
Shabunina OV.
Rusinov VL.
Chupakhin ON.
Tetrahedron Lett.
2005,
46:
1521
1d
Kozhevnikov VN.
Kozhevnikov DN.
Shabunina OV.
Rusinov VL.
Chupakhin ON.
Tetrahedron Lett.
2005,
46:
1791
1e
Altuna-Urquijo M.
Stanforth SP.
Tarbit B.
Tetrahedron Lett.
2005,
46:
6111 ; and references therein
2a
Raw SA.
Taylor RJK.
Chem. Commun.
2004,
508
2b
Fernandez Sainz Y.
Raw SA.
Taylor RJK.
J. Org. Chem.
2005,
70:
10086
2c
Laphookhieo S.
Jones S.
Raw SA.
Fernández Sainz Y.
Taylor RJK.
Tetrahedron Lett.
2006,
47:
3865
2d See also (pyridazine synthesis) Geyelin PH.
Raw SA.
Taylor RJK.
ARKIVOC
2007,
(xi):
37
For recent applications of triazines, see:
3a
Vzorov AN.
Bhattacharyya D.
Marzilli LG.
Compans RW.
Antiviral Res.
2005,
65:
57
3b
Wang X.-L.
Chao H.
Li H.
Hong X.-L.
Liu Y.-J.
Tan L.-F.
Ji L.-N.
Inorg. Biochem.
2004,
98:
1143
3c
Hudson MJ.
Drew MGB.
Foreman MRStJ.
Hill C.
Huet N.
Madic C.
Youngs TGA.
Dalton Trans.
2003,
1675
3d
Abdel-Rahman RM.
Pharmazie
2001,
56:
195
3e
Croot PL.
Hunter KA.
Anal. Chim. Acta
2000,
406:
289
4a
Boger DL.
Weinreb SN.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic Press;
London:
1987.
Chap. 10.
p.300
4b
Boger DL.
Chem. Rev.
1986,
86:
781
4c
Boger DL.
Tetrahedron
1983,
39:
2869
4d
Boger DL.
Panek JS.
J. Org. Chem.
1981,
46:
2179
4e
Boger DL.
Panek JS.
Meier MM.
J. Org. Chem.
1982,
47:
895
5
Chenard BL.
Ronau RT.
Schulte GA.
J. Org. Chem.
1988,
53:
5175
6
Representative Procedure
A suspension of triazine 1a (50 mg, 0.21 mmol), pyrrolidine (6, 26 µL, 0.31 mmol), cyclopentanone (2a, 27 µL, 0.31 mmol) and silica (Fluka, flash chromatography silica gel 60, 220-440 mesh, 200 mg) in toluene (4 mL) was heated under reflux for 5 h. The reaction mixture was cooled to r.t., diluted with EtOAc (6 mL), and stirred an additional 20 min at the same temperature. The mixture was then filtered through a Celite pad, concentrated and the residue obtained was eluted from a column of silica (PE-EtOAc, 5:1) yielding the desired pyridine 5a (57 mg, 99%); data were consistent with those reported in ref. 2b.
7
Banerjee AK.
Laya MS.
Vera WJ.
Russ. Chem. Rev.
2001,
70:
971
8 Similar reactions were carried out in which the silica gel was replaced by stoichiometric amounts of HCl, MeCOOH, Et3N, or 1,5-diazabicyclo[4.3.0]non-5-ene (DBU). None of these reactions produced pyridines 5 in significant quantities.
9a
Helm MD.
Moore JE.
Plant A.
Harrity JPA.
Angew. Chem. Int. Ed.
2005,
44:
3889
9b
Atfah MA.
J. Heterocycl. Chem.
1989,
26:
717
10
Fischer DS.
Allan GM.
Bubert C.
Vicker N.
Smith A.
Tutill HJ.
Wood APL.
Packham G.
Mahon MF.
Reed MJ.
Potter BVL.
J. Med. Chem.
2005,
48:
5749 ; and references therein
11 The structure of the cycloaddition product 10 was assigned using NOE and HMBC NMR experiments.
12 A solution of triazine 1a (100 mg, 0.43 mmol), pyrrolidine (6, 52 µL, 0.64 mmol) and estrone (9) (113 mg, 0.42 mmol) in xylene (4 mL) was heated in a screwcapped tube at 160 °C for 10 h. The reaction mixture was cooled to r.t., silica (Fluka, flash chromatography silica gel 60, 220-440 mesh) was added and the yellow suspension obtained refluxed for an additional 5 h. The mixture was then cooled to r.t., filtered through a Celite pad, concentrated and the residue obtained was eluted from a column of silica (CHCl3-EtOAc, 7:1) yielding the desired 3-hydroxy-estra-1,3,5 (10)-triene-[17,16-c]-(2′-pyrid-2-yl)-(6′-phenyl)-pyridine (10, 129 mg, 67%) as a white solid, mp 261-262 °C (toluene-hexane); [α]D
25 -50.0 (c 0.5, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.71 (1 H, ddd, J = 0.9, 1.8, 4.8 Hz, C-9′-H), 8.43 (1 H, ddd, J = 0.9, 1.0, 7.9 Hz, C-12′-H), 8.13 (2 H, m, C-14′-H, C-18′-H), 7.83 (1 H, ddd, J = 1.8, 7.6, 7.9 Hz, C-11′-H), 7.56 (1 H, s, C-5′-H), 7.49 (2 H, m, C-15′-H, C-17′-H), 7.41 (1 H, m, C-16′-H), 7.29 (1 H, ddd, J = 1.0, 4.8, 7.6 Hz, C-10′-H), 7.18 (1 H, d, J = 8.4 Hz, C-1-H), 6.63 (1 H, dd, J = 2.6, 8.4 Hz, C-2-H), 6.57 (1 H, d, J = 2.6 Hz, C-4-H), 4.80 (1 H, s, OH), 3.45 (1 H, dd, J = 5.8, 16.1 Hz, H-12a), 3.04 (1 H, dd, J = 11.9, 16.1 Hz, H-12b), 2.90 (2 H, m, H-6a,b) 2.47 (1 H, m), 2.35 (2 H, m), 2.12 (1 H, m), 1.77 (4 H, m), 1.50 (1 H, m), 1.07 (3 H, s, CH3). 13C NMR (100 MHz, CDCl3): δ = 166.2, 158.6, 155.2, 153.8, 151.6, 148.5, 140.0, 138.71, 136.7, 136.4, 132.3, 128.6, 127.1, 126.3, 123.6, 122.9, 115.4, 113.3, 112.9, 56.1, 45.8, 44.3, 37.8, 34.6, 32.2, 29.6, 27.7, 26.4, 19.0. MS (EI): m/z (%) = 459.2 (100) [M + 1]. HRMS (EI): m/z calcd for C32H31N2O [M + 1]: 459.2436; found: 459.2431 (-3.2 ppm error).