Am J Perinatol 2007; 24(7): 435-440
DOI: 10.1055/s-2007-985047
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Dynamic Changes of Plasma Neuropeptide Y and Neurotensin and Their Role in Regulating Cerebral Hemodynamics in Neonatal Hypoxic-Ischemic Encephalopathy

Jing Liu1 , Juan Zhao1 , Ying-Fen Di1 , Xiu-Xia Guo1 , Gui-Rong Zhai1 , Xing-Hua Huang1
  • 1Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Juli 2007 (online)

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is a common cause of neonatal encephalopathy and is one of the most important causes of neonatal death and disabilities, especially those infants with moderate to severe encephalopathy. However, the pathogenesis of HIE still remains unclear. The purpose of this study was to explore the dynamic changes in plasma neuropeptide Y (NPY) and neurotensin (NT) as well as their role in regulating cerebral hemodynamics in HIE patients. The plasma levels of NPY and NT in the umbilical artery and peripheral blood on the first, third, and seventh days after birth in 40 term infants with HIE and 40 healthy controls were measured using radioimmunoassay. On the first day of life, the blood samples were collected immediately when ultrasound examinations were finished. The ultrasound transducer was placed on the temporal fontanelle to detect the hemodynamic parameters of the middle cerebral artery, including peak systolic flow velocity, end-diastolic flow velocity, time-average mean velocity, pulsatility index, and resistance index (RI) in both groups were measured by pulse Doppler ultrasound in the first day after birth. The relationship between RI and NPY or NT was analyzed by linear regression analysis. NPY levels in umbilical blood ([mean ± standard deviation] 615.5 ± 130.7 ng/L) and first-day peripheral blood (355.9 ± 57.4 ng/L) in neonates with HIE were significantly higher than those in normal newborns’ blood (199.1 ± 63.2 and 214.4 ± 58.0 ng/L, respectively; p < 0.01). NPY levels in HIE neonates then declined to control levels on the third day after birth (p > 0.05). However, the levels of plasma NT in umbilical blood and peripheral blood were much higher in the HIE group than those in normal newborns during the first week (p < 0.01). The results of Doppler ultrasound examinations showed that cerebral blood flow velocity significantly decreased, whereas RI increased markedly in HIE patients compared with healthy controls (p < 0.01). Linear regression analysis revealed that the RI was positively correlated with NPY levels (r = 0.614; p < 0.01) and negatively correlated with NT levels (r = -0.579; p < 0.01). The results of this study showed that there was a significant increase in plasma NPY and NT levels in HIE patients and this was strongly related to the severity of HIE, and the hemodynamic parameter RI was significantly correlated with NPY and NT. Therefore, we believe that the dynamic changes in plasma NPY or NT levels participate in the mechanisms of HIE by regulating cerebral hemodynamic changes after neonatal asphyxia occurs.

REFERENCES

  • 1 Ferriero D M. Neonatal brain injury.  N Engl J Med. 2004;  351 1985-1995
  • 2 Perlman J M. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy.  Pediatrics. 2006;  117 S28-S33
  • 3 Shah P, Riphagen S, Beyene J, Perlman M. Multiorgan dysfunction in infants with post-asphyxia hypoxic-ischaemic encephalopathy.  Arch Dis Child Fetal Neonatal Ed. 2004;  89 F152-F155
  • 4 Liu J, Li J, Gu M. The correlation between myocardial function and cerebral hemodynamics in term infants with hypoxic-ischemic encephalopathy.  J Trop Pediatr. 2007;  53 44-48
  • 5 Feng G Z, Feng X, Yang L et al.. Plasma neuropeptide Y level in neonates with asphyxia.  Zhongguo Dang Dai Er Ke Za Zhi. 2003;  5 314-316
  • 6 Antonelli T, Ferraro L, Fuxe K et al.. Neurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity.  Cereb Cortex. 2004;  14 466-473
  • 7 Suzuki Y, Sato S, Suzuki H et al.. Increased neuropeptide Y concentrations in cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage.  Stroke. 1989;  20 1680-1684
  • 8 Juul R, Edvinsson L, Fredriksen T A et al.. Changes in the levels of neuropeptide Y-LI in the external jugular vein in connection with vasoconstriction following subarachnoid haemorrhage in man: involvement of sympathetic neuropeptide Y in cerebral vasospasm.  Acta Neurochir (Wien). 1990;  107 75-81
  • 9 Taeusch H W, Ballard R A. Avery’s Diseases of the Newborn. 7th ed. Philadelphia; Elsevier Saunders 1999: 855
  • 10 Liu J, Cao H Y, He C Y et al.. Hemodynamics of multiple organs in asphyxiated neonates.  Zhonghua Er Ke Za Zhi. 1998;  36 69-73
  • 11 Liu J, Cao H Y, Huang X H, Wang Q. The pattern and early diagnostic value of Doppler ultrasound for neonatal hypoxic-ischemic encephalopathy.  J Trop Pediatr. 2007 June 7 (Epub ahead of print); 
  • 12 Ilves P, Talvik R, Talvik T. Changes in Doppler ultrasonography in asphyxiated term infants with hypoxic-ischaemic encephalopathy.  Acta Paediatr. 1998;  87 680-684
  • 13 Dumont Y, Martel J C, Fournier A et al.. Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues.  Prog Neurobiol. 1992;  38 125-167
  • 14 Glass M J, Chan J, Pickel V M. Ultrastructural localization of neuropeptide Y Y1 receptors in the rat medial nucleus tractus solitarius: relationships with neuropeptide Y or catecholamine neurons.  J Neurosci Res. 2002;  67 753-765
  • 15 Adrian T E, Allen J M, Bloom S R et al.. Neuropeptide Y distribution in human brain.  Nature. 1983;  306 584-586
  • 16 Minson J B, Llewellyn-Smith I J, Pilowsky P M et al.. Bulbospinal neuropeptide Y-immunoreactive neurons in the rat: comparison with adrenaline-synthesizing neurons.  J Auton Nerv Syst. 1994;  47 233-243
  • 17 Tseng C J, Lin H C, Wang S D et al.. Immunohistochemical study of catecholamine enzymes and neuropeptide Y in the rostral ventrolateral medulla and bulbospinal projection.  J Comp Neurol. 1993;  334 294-303
  • 18 Michalkiewicz M, Zhao G, Jia Z et al.. Central neuropeptide Y signaling ameliorates N(omega)-nitro-L-arginine methyl ester hypertension in the rat through a Y1 receptor mechanism.  Hypertension. 2005;  45 780-785
  • 19 Matsumura K, Tsuchihashi T, Abe I. Central cardiovascular action of neuropeptide Y in conscious rabbits.  Hypertension. 2000;  36 1040-1044
  • 20 Emson P C, Goedert M, Horsfield P et al.. The regional distribution and chromatographic characterisation of neurotensin-like immunoreactivity in the rat central nervous system.  J Neurochem. 1982;  38 992-999
  • 21 Mai J K, Triepel J, Metz J. Neurotensin in the human brain.  Neuroscience. 1987;  22 499-524
  • 22 López Ordieres M G, Rodríguez de Lores Arnaiz G. Neurotensin effect on Na+-K+-ATPase is CNS area- and membrane-dependent and involves high affinity NT1 receptor.  Neurochem Res. 2002;  27 1555-1561
  • 23 Katz L M, Wang Y F, McMahon B et al.. Neurotensin analog NT69L induces rapid and prolonged hypothermia after hypoxic ischemia.  Acad Emerg Med. 2001;  8 1115-1121
  • 24 Katz L M, Young A, Frank J E et al.. Neurotensin-induced hypothermia improves neurologic outcome after hypoxic-ischemia.  Crit Care Med. 2004;  32 806-810
  • 25 Chen S H, Cheung R T. Intracerebroventricular injection of a neuropepptide Y-Y1 receptor agonist increases while BIBP3226, a Y1 antagonist, reduces the infarct volume following transient middle cerebral artery occlusion in rates.  Neuroscience. 2003;  116 119-126
  • 26 Torup L, Borsdal J, Sager T. Neuroprotective effect of the neurotensin analogue JMV449 in a mouse model of permanent middle cerebral ischemia.  Neurosci Lett. 2003;  351 173-176

Jing LiuPh.D. 

Department of Neonatology and NICU, Beijing Obstetrics and Gynecology Hospital, Capital Medical University

251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China

    >