Synlett 2007(14): 2209-2212  
DOI: 10.1055/s-2007-985559
LETTER
© Georg Thieme Verlag Stuttgart · New York

o-Benzenedisulfonimide: A Novel and Reusable Catalyst for Acid-Catalyzed Organic Reactions

Margherita Barbero*, Silvano Cadamuro, Stefano Dughera, Paolo Venturello
Dipartimento di Chimica Generale ed Organica Applicata dell’Università, Via Pietro Giuria, 7, 10125 Torino, Italy
Fax: +39(011)6707642; e-Mail: margherita.barbero@unito.it;
Further Information

Publication History

Received 8 June 2007
Publication Date:
24 July 2007 (online)

Abstract

The o-benzenedisulfonimide is used as Brønsted acid in catalytic amounts in various acid-catalyzed organic reactions, such as etherification, esterification, and acetalization; the conditions required are mild and in the considered examples the results are always good. A useful aspect of the use of this catalyst is its easy recovery in high yield from the reaction mixture and its reuse in ­other reactions, with economic and ecological advantages.

    References and Notes

  • 1 Hollemann AF. Recl. Trav. Chim. Pays-Bas  1921,  40:  446 
  • 2 Hurtley WR. Smiles S. J. Chem. Soc.  1926,  1821 
  • 3 Hendrickson JB. Okano S. Bloom RK. J. Org. Chem.  1969,  34:  3434 
  • 4 Blaschette A. Jones PG. Hamann T. Näveke M. Z. Anorg. Allg. Chem.  1993,  619:  912 
  • 5 Davis FA. Sundarababu G. Qi H. Org. Prep. Proced. Int.  1998,  30:  107 
  • 6 Barbero M. Degani I. Fochi R. Regondi V. Gazz. Chim. Ital.  1986,  116:  165 
  • 7 Sørbye K. Tautermann C. Carlsen P. Fiksdahl A. Tetrahedron: Asymmetry  1998,  9:  681 
  • 8 Karino H, Goda H, Sakamoto J.-I, Yoshida K, and Nishiguchi H. inventors; WO  9633167.  ; Chem. Abstr. 1997, 126, 18657
  • 9a Barbero M, Degani I, Fochi R, and Perracino P. inventors; WO  9839312.  ; Chem. Abstr. 1998, 129, 244942
  • 9b Barbero M. Crisma M. Degani I. Fochi R. Perracino P. Synthesis  1998,  1171 
  • 9c Barbero M. Degani I. Dughera S. Fochi R. Synthesis  2004,  2386 ; and references cited therein
  • 10a Artuso E. Barbero M. Degani I. Dughera S. Fochi R. Tetrahedron  2006,  62:  3146 
  • 10b Dughera S. Synthesis  2006,  1117 
  • 10c Barbero M. Cadamuro S. Dughera S. Synthesis  2006,  3443 
  • 10d Barbero M. Cadamuro S. Dughera S. Giaveno C. Eur. J. Org. Chem.  2006,  4884 
  • 11 Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century   Wiley; Chichester: 2004.  Chap. 4. p.431-469  ; and references therein
  • 12 King JF. In The Chemistry of Sulphonic Acids, Esters and their Derivatives   Patai S. John Wiley; New York: 1991.  Chap. 6. p.249-259  
  • For recent works on acid-catalyzed dehydrative etherification, esterification, and acetalization reactions with metal catalysts, see for example:
  • 13a Sharma GVM. Mahalingam AK. J. Org. Chem.  1999,  64:  8943 
  • 13b Sharma GVM. Prasad TR. Mahalingam AK. Tetrahedron Lett.  2001,  42:  759 
  • 13c Saburi H. Tanaka S. Kitamura M. Angew. Chem. Int. Ed.  2005,  44:  1730 
  • 13d Shibata T. Fujiwara R. Ueno Y. Synlett  2005,  152 
  • With solid-acid catalysis:
  • 13e Scott LT. Naples JO. Synthesis  1973,  209 
  • 13f Olah GA. Shamma T. Prakash GKS. Catal. Lett.  1997,  46:  1 
  • 13g Harmer MA. Sun Q. Appl. Catal., A  2001,  221:  45 
  • 13h Shen JGC. Herman RG. Klier K. J. Phys. Chem. B  2002,  106:  9975 
  • 13i Sanz R. Martinez A. Miguel D. Alvarez-Gutierrez JM. Rodriguez F. Adv. Synth. Catal.  2006,  348:  1841 
  • In supercritical fluids:
  • 13j Gray WK. Smail FR. Hitzler MG. Ross SK. Poliakoff M. J. Am. Chem. Soc.  1999,  121:  10711 
  • In ionic liquids:
  • 13k Cole AC. Jensen JL. Ntai I. Tran KLT. Weaver KJ. Forbes DC. Davis JH. J. Am. Chem. Soc.  2002,  124:  5962 
  • 13l Davis JH. inventors; WO  03086605.  ; Chem. Abstr. 2003, 139, 325782
  • In water:
  • 13m Manabe K. Iimura S. Sun X.-M. Kobayashi S. J. Am. Chem. Soc.  2002,  124:  11971 
  • 14a Greene TW. Wuts PGM. Protective Groups in Organic Synthesis   3rd ed.:  Wiley; New York: 1999.  Chap. 2. p.17-245  
  • 14b Feuer H. Hooz J. In The Chemistry of the Ether Linkage   Patai S. Interscience; New York: 1967.  Chap. 10. p.445-498  
  • 14c Meerwein H. In Methoden der Organischen Chemie (Houben-Weyl)   Vol. VI/3:  Thieme Verlag; Stuttgart: 1965.  p.7-140  
  • 15a Greene TW. Wuts PGM. Protective Groups in Organic Synthesis   3rd ed.:  Wiley; New York: 1999.  Chap. 5. p.369-453  
  • 15b Euranto EK. In The Chemistry of Carboxylic Acids and Esters   Patai S. Interscience; New York: 1969.  Chap. 11. p.505-588  
  • 16a Greene TW. Wuts PGM. Protective Groups in Organic Synthesis   3rd ed.:  Wiley; New York: 1999.  Chap. 4. p.293-368  
  • 16b Schmitz E. Eichhorn I. In The Chemistry of the Ether Linkage   Patai S. Interscience; New York: 1967.  Chap. 7. p.310-351  
  • 16c Bergstrom RG. In The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and Their Sulphur Analogues   Suppl. E, Part 2:  Wiley; Chichester: 1980.  Chap. 20. p.881-902  
  • 16d Shimizu K.-I. Hayashi E. Hatamachi T. Kodama T. Kitayama Y. Tetrahedron Lett.  2004,  45:  5135 
  • 16e Kumar R. Kumar D. Chakraborti AK. Synthesis  2007,  299 
  • 19a

    Typical Procedure for o -Benzenedisulfonimide-Catalyzed Acetalization (Entry 10, Table 1) To a solution of 4-chlorobenzaldehyde (7a; 0.28 g, 2 mmol) and ethane-1,2-diol (9; 0.37 g, 6 mmol) in toluene (5 mL) was added o-benzenedisulfonimide (1; 1 mol%; 0.0044 g, 0.02 mmol) and the reaction mixture was stirred at 90 °C for 60 min. The reaction mixture was treated with solid NaHCO3, evaporated under reduced pressure, and the residue was poured into Et2O-H2O (40 mL, 1:1). The aqueous layer was separated. The organic extract was dried over Na2SO4, and evaporated under reduced pressure; the crude residue was chromatographed on a short column (PE-Et2O, 9.5:0.5) to provide pure 4-chlorobenzaldehyde ethlylene acetal in 87% yield (8d; 0.32 g); colorless oil with spectral data identical to those reported. [19b] 1H NMR: δ = 3.92-3.99 (m, 2 H), 4.02-4.09 (m, 2 H), 5.72 (s, 1 H), 7.29 (d, J = 8.8 Hz, 2 H), 7.36 (d, J = 8.6 Hz, 2 H). 13C NMR: δ = 65.51 (2 C), 103.21, 128.10 (2 C), 128.75 (2 C), 135.20, 136.69. MS (EI, 70 eV): m/z (%) = 184 (35) [M+], 183 (100).

  • 19b Katritzky AR. Odens HH. Voronkov MV. J. Org. Chem.  2000,  65:  1886 
  • 21 Matsuda I. Wakamatsu S. Komori K.-I. Makino T. Itoh K. Tetrahedron Lett.  2002,  43:  1043 
  • For compound 6a, see:
  • 22a Sharghi H. Sarvari MH. Eskandari R. J. Chem. Res., Synop.  2005,  488 
  • 22b Vijayakumar B. Iyengar P. Nagendrappa G. Prakash BSJ. J. Indian Chem. Soc.  2005,  82:  922 
  • 22c Banerjee A. Sengupta S. Adak MM. Banerjee GC. J. Org. Chem.  1983,  48:  3106 
  • 22d For compounds 6a and 6b, see: Gumaste VK. Deshmukh ARAS. Bhawal BM. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1996,  35:  1174 
  • For compounds 8a and 8b, see:
  • 23a Shimizu K.-I. Hayashi E. Hatamachi T. Kodama T. Kitayama Y. Tetrahedron Lett.  2004,  45:  5135 
  • For compound 8d, see:
  • 23b Azzena U. Dettori G. Sforazzini G. Yus M. Foubelo F. Tetrahedron  2006,  62:  1557 
  • 23c Shimizu K.-I. Hayashi E. Hatamachi T. Kodama T. Higuchi T. Satsuma A. Kitayama Y. J. Catal.  2005,  231:  131 
  • 23d Huerta FF. Gomez C. Yus M. Tetrahedron  1999,  55:  4043 
17

Typical Procedure for o -Benzenedisulfonimide-Catalyzed Etherification (Entry 1, Table 1) To a solution of 1,3-diphenylprop-2-en-1-ol (3; 0.42 g, 2.0 mmol) in abs. EtOH (10 mL) was added o-benzenedisulfon-imide (1; 5 mol%; 0.02 g, 0.1 mmol); the reaction mixture was stirred at r.t. The reaction was monitored by TLC (PE-Et2O, 6:4), GC, and GC-MS analyses until complete disappearance of the starting material. Then the reaction mixture was evaporated under reduced pressure and the residue was poured into Et2O-H2O (40 mL, 1:1). The aqueous layer was separated. The organic extract was washed with H2O (20 mL), dried over Na2SO4, and evaporated under reduced pressure. The crude residue was chromatographed on a short column (PE-Et2O, 6:4) to provide pure (E)-1,3-diphenyl-3-ethoxyprop-1-ene (4a; GC, GC-MS, TLC, 1H NMR) in 77% yield (0.37 g); colorless oil. 1H NMR: δ = 1.33 (t, J = 7.0 Hz, 3 H), 3.60 (superimposed q, J = 7.0 Hz, 2 H diastereotopic), 4.98 (d, J = 6.8 Hz, 1 H), 6.38 (dd, J = 16.0, 6.8 Hz, 1 H), 6.68 (d, J = 16.0 Hz, 1 H), 7.25-7.50 (m, 10 H). 13C NMR: δ = 15.72, 64.33, 82.86, 126.93 (2 C), 127.17 (2 C), 127.94, 128.00, 128.84 (4 C), 131.00, 131.45, 136.97, 141.86. MS (EI, 70 eV): m/z (%) 238 (70) [M+], 105 (100).

18

Typical Procedure for o -Benzenedisulfonimide-Catalyzed Esterification (Entry 5, Table 1) To a solution of phenylacetic acid (5; 0.27 g, 2.0 mmol) and butan-1-ol (0.16 g, 2.2 mmol) in toluene (10 mL) was added o-benzenedisulfonimide (1; 25 mol%; 0.11 g, 0.5 mmol) and the reaction mixture was stirred at 90 °C for 30 min. After the usual workup, the crude residue was chromatographed on a short column (PE-Et2O, 8:2) to provide pure butyl phenylacetate (6a; GC, GC-MS, TLC, 1H NMR) in 90% yield (0.38 g); colorless oil with spectral data identical to those reported. [22d] 1H NMR: δ = 0.85 (t, J = 7.0 Hz, 3 H), 1.23-1.34 (m, 2 H), 1.48-1.58 (m, 2 H), 3.56 (s, 2 H), 4.04 (t, J = 6.6 Hz, 2 H), 7.15-7.28 (m, 5 H). 13C NMR: δ = 13.86, 19.27, 30.80, 41.66, 64.94, 127.21, 128.72 (2 C), 129.43 (2 C), 134.40, 171.88; MS (EI, 70 eV): m/z (%) = 192 (5) [M+], 91 (100).

20

The aqueous layer and aqueous washing from the various reactions were collected and evaporated under reduced pressure. The residue was passed through a column of Dowex 50X8 ion-exchange resin (1.6 g for 1 g of product), eluting with H2O (about 35 mL). After removal of H2O under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide(1) was recovered; mp 192-194 °C, from toluene (lit. 3: mp 192-194 °C).