Subscribe to RSS
DOI: 10.1055/s-2007-985560
Nontemplated versus Templated Synthesis of a 56-Membered Macrocycle
Publication History
Publication Date:
24 July 2007 (online)
Abstract
The amine-substituted quinquephenylene 1 was prepared in a Suzuki coupling approach and by reaction with terephthalic dialdehyde (7) it was transformed into the phenyl-connected diimine 8. Ring-closing metathesis with the Grubbs I or II catalyst led to the corresponding macrocycle 9. Hydrogenation resulted in the reduction of the double bonds as well as the removal of the template to yield the 56-membered macrocycle 6 in an overall yield of 43% (from 1). Direct metathesis reaction of 1 followed by hydrogenation afforded 6 in only 21% yield.
Key words
macrocycles - quinquephenylene - ring-closing metathesis - preorganization - template effect
-
1a
Pedersen C. Angew. Chem., Int. Ed. Engl. 1988, 27: 1021 ; Angew. Chem. 1988, 100, 1053 -
1b
Macrocyclic Chemistry - Current Trends and Future Perspectives
Gloe K. Springer; Dordrecht: 2005. - 2
Parker D. Macrocycle Synthesis: A Practical Approach Oxford University Press; Oxford: 1996. - 3
Anderson S.Anderson HL.Bashall A.McPartlin M.Sanders JKM. Angew. Chem., Int. Ed. Engl. 1995, 34: 1096 ; Angew. Chem. 1995, 107, 1196 - 4 For a recent example, see:
Becker K.Lagoudakis PG.Gaefke G.Höger S.Lupton JM. Angew. Chem. Int. Ed. 2007, 46: 3450 ; Angew. Chem. 2007, 119, 3520 - For selected reviews, see:
-
5a
Laughrey ZR.Gibb BC. Top. Curr. Chem. 2005, 249: 67 -
5b
Hoss R.Vögtle F. Angew. Chem., Int. Ed. Engl. 1994, 33: 375 ; Angew. Chem. 1994, 106, 389 - 6
Camacho DH.Salo EV.Guan Z. Org. Lett. 2004, 6: 865 - 7
Miyaura N.Ishiyama T.Sasaki H.Ishikawa M.Satoh M.Suzuki A. J. Am. Chem. Soc. 1989, 111: 314 - 8
Miura Y.Oka H.Momoki M. Synthesis 1995, 1419 -
9a
Characterization of 1
Mp 198 °C. 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, 3 J = 8.5 Hz, 4 H, Har), 7.53 (d, 3 J = 8.5 Hz, 4 H, Har), 7.49 (d, 3 J = 8.8 Hz, 4 H, Har), 7.15 (s, 2 H, Har), 6.92 (d, 3 J = 8.8 Hz, 4 H, Har), 5.86 (ddt, 3 J trans = 17.0 Hz, 3 J cis = 10.4 Hz, 3 J = 6.7 Hz, 2 H, HC=), 5.12 (dm, 3 J trans = 17.0 Hz, 2 H, =CHtrans), 5.05 (dm, 3 J cis = 10.4 Hz, 2 H, =CHcis), 4.00 (t, 3 J = 6.7, 4 H, CH2), 2.51 (q, 3 J = 6.7, 4 H, CH2), 1.28 (s, 9 H, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 158.5 (C), 141.7 (C), 139.7 (C), 138.3 (C), 137,5 (C), 134.4 (CH), 133.2 (C), 129.8 (CH), 128.0 (CH), 127.8 (C), 127.0 (CH), 126.9 (CH), 117.1 (CH2), 114.9 (CH), 67.4 (CH2), 34.2 (C), 33.8 (CH2), 31.7 (CH3). MS (EI, 70 eV): m/z (%) = 593.3 (100) [M+, C42H43NO2 +], 578.2 (97), 538.2 (3), 523.2 (12). Anal. Calcd for C42H43NO2·0.5 H2O: C, 83.68; H, 7.36; N, 2.32. Found: C, 83.76; H, 7.35; N, 2.11. X-ray crystal structure analysis for 1: formula C42H43NO2, M = 593.77, colorless crystal 0.30 ¥ 0.10 ¥ 0.10 mm, a = 9.656(1), b = 35.774(1), c = 9.666(1) Å, V = 3339.0(5) Å3, ρ calc = 1.181 g cm-3, µ = 0.549 mm-1, empirical absorption correction (0.853 £ T £ 0.947), Z = 4, orthorhombic, space group Pnma (No. 62), λ = 1.54178 Å, T = 223 K, w and j scans, 13160 reflections collected (h, k, l), [(sinq)/l] = 0.60 Å-1, 2693 independent (R int = 0.047) and 2683 observed reflections [I £ 2 s(I)], 215 refined parameters, R = 0.081, wR 2 = 0.246, max. residual electron density 0.35 (-0.20) e Å-3, hydrogen atoms are calculated and refined riding.
Data set was collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN,9b absorption correction Denzo,9c structure solution SHELXS-97,9d structure refinement SHELXL-97 (G. M. Sheldrick, Universität Göttingen, 1997), graphics SCHAKAL (E. Keller, Universität Freiburg, 1997).
CCDC 649216 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, E-mail: deposit@ccdc.cam.ac.uk]. -
9b
Otwinowski Z.Minor W. Methods in Enzymology 1997, 276: 307 -
9c
Otwinowski Z.Borek D.Majewski W.Minor W. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 2003, 59: 228 -
9d
Sheldrick GM. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1990, 46: 467 - 10
Grubbs RH. Angew. Chem. Int. Ed. 2006, 45: 3760 ; Angew. Chem. 2006, 118, 3845 - 11
Lautens M.Tayama E.Herse C. J. Am. Chem. Soc. 2005, 127: 72 - 12
Bedard TC.Moore JS. J. Am. Chem. Soc. 1995, 117: 10662
References and Notes
Characterization of 6
Mp >250 °C. 1H NMR (300 MHz, CDCl3): δ = 7.53 (d, 3
J = 8.4 Hz, 8 H, Har), 7.49-7.40 (m, 16 H, Har), 7.12 (s, 4 H, Har), 6.86 (d, 3
J = 8.7 Hz, 8 H, Har), 3.98 (t, 3
J = 6.2 Hz, 8 H, CH2), 1.82 (m, 8 H, CH2), 1.53 (m, 8 H, CH2), 1.26 (s, 18 H, t-Bu). 13C NMR (75 MHz, CDCl3): δ = 158.7 (C), 141.0 (C), 139.6 (C), 138.5 (C), 138.4 (C), 133.1 (C), 129.8 (CH), 128.0 (CH), 127.3 (C), 127.0 (CH), 126.6 (CH), 115.0 (CH), 67.5 (CH2), 34.1 (C), 31.6 (CH3), 28.6 (CH2), 25.0 (CH2). ESI-MS (+): m/z = 1135.4 [MH+, C80H82N2O4 + H+]. Anal. Calcd for C80H82N2O4·H2O: C, 83.30; H, 7.34; N, 2.43. Found: C, 83.47; H, 7.37; N, 1.99.