Subscribe to RSS
DOI: 10.1055/s-2007-985567
Monooxychlorophosphine as a Novel and Efficient Ligand for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides
Publication History
Publication Date:
13 August 2007 (online)

Abstract
A new sterically hindered monooxychlorophosphine was synthesized and the complex generated in situ from its reaction with Pd2(dba)3 promoted the Suzuki-Miyaura reactions of arylboronic acids with aryl chlorides in good yields.
Key words
Suzuki reaction - monooxychlorophosphine - aryl chlorides
- Selected recent reviews:
-
1a
Miyaura N. Top. Curr. Chem. 2002, 219: 11 -
1b
Kotha S.Kashinath D. Tetrahedron 2002, 58: 9633 -
1c
Bellina F.Carpita A.Rossi R. Synthesis 2004, 2419 -
1d
Hassan J.Sevignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
1e
Corbet J.-P.Mignani G. Chem. Rev. 2006, 106: 2651 -
2a
Wang W.Xiong C.Yang J.Hruby VJ. Tetrahedron Lett. 2001, 42: 7717 -
2b
Vaz B.Rosana R.Nieto M.Paniello AI.de Lera AR. Tetrahedron Lett. 2001, 42: 7409 -
2c
Schomaker JM.Delia TJ. J. Org. Chem. 2001, 66: 7125 -
2d
Wong K.-T.Huang TS.Lin Y.Wu C.-C.Lee G.-H.Peng S.-M.Chou CH.Su YO. Org. Lett. 2002, 4: 513 -
2e
Zhang XJ.Tian HK.Liu Q.Wang LX.Geng YH.Wang FS. J. Org. Chem. 2006, 71: 4332 -
3a
Hobbs PD.Upender V.Dawson MI. Synlett 1997, 965 -
3b
Nicolaou KC.Li H.Boddy CNC.Ramanjulu JM.Yue T.-Y.Natarajan S.Chu X.-J.Bräse S.Rübsam F. Chem. Eur. J. 1999, 5: 2584 -
3c
Nicolaou KC.Koumbis AE.Takayanagi M.Natarajan S.Jain NF.Bando T.Li H.Hughes R. Chem. Eur. J. 1999, 5: 2622 -
3d
Kamikawa K.Watanabe T.Daimon A.Uemura M. Tetrahedron 2000, 56: 2325 -
4a
Zapf A.Ehrentraut A.Beller M. Angew. Chem. Int. Ed. 2000, 39: 4153 -
4b
Hu Q.Lu Y.Tang Z.Yu H. J. Am. Chem. Soc. 2003, 125: 2856 -
4c
Zapf A.Beller M. Chem. Commun. 2005, 431 -
4d
Liu D.Gao W.Dai Q.Zhang X. Org. Lett. 2005, 7: 4907 -
4e
Dai Q.Gao W.Liu D.Kapes LM.Zhang X. J. Org. Chem. 2006, 71: 3928 -
4f
Li GY. Angew. Chem. Int. Ed. 2001, 40: 1513 -
4g
Billingsley K.Buchwald SL. J. Am. Chem. Soc. 2007, 129: 3358 -
4h
Botella L.Nájera C. Angew. Chem. Int. Ed. 2002, 41: 179 -
4i
Ohta H.Tokunaga M.Obora Y.Iwai T.Iwasawa T.Fujihara T.Tsuji Y. Org. Lett. 2007, 9: 89 -
4j
Gong JF.Liu GY.Du CX.Zhu Y.Wu YJ. J. Organomet. Chem. 2005, 690: 3963 -
5a
Christmann U.Vilar R. Angew. Chem. Int. Ed. 2005, 44: 366 ; and references therein -
5b
Miura M. Angew. Chem. Int. Ed. 2004, 43: 2201 -
5c
Littke AF.Fu GC. Angew. Chem. Int. Ed. 2002, 41: 4176 -
6a
Old DW.Wolfe JP.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 9722 -
6b
Wolfe JP.Buchwald SL. Angew. Chem. Int. Ed. 1999, 38: 2413 -
6c
Yin J.Rainka MP.Zhang XX.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 1162 -
6d
Barder TE.Walker SD.Martinelli JR.Buchwald SL. J. Am. Chem. Soc. 2005, 127: 4685 -
6e
Wolfe JP.Singer RA.Yang BH.Buchwald SL. J. Am. Chem. Soc. 1999, 121: 9550 -
7a
Littke AF.Fu GC. Angew. Chem. Int. Ed. 1998, 37: 3387 -
7b
Littke AF.Dai C.Fu GC. J. Am. Chem. Soc. 2000, 122: 4020 -
7c
Netherton MR.Dai C.Neuschütz K.Fu GC. J. Am. Chem. Soc. 2001, 123: 10099 -
7d
Kirchhoff JH.Netherton MR.Hills ID.Fu GC. J. Am. Chem. Soc. 2002, 124: 13662 -
7e
Zhou J.Fu GC. J. Am. Chem. Soc. 2004, 126: 1340 -
7f
Kudo N.Perseghini M.Fu GC. Angew. Chem. Int. Ed. 2006, 45: 1282 -
8a
Zapf A.Jackstell R.Rataboul F.Reirmeier T.Monsees A.Fuhrmann C.Shaikh N.Dingerdissen U.Beller M. Chem. Commun. 2004, 38 -
8b
Harkal S.Rataboul F.Zapf A.Fuhrmann C.Riermeier T.Monsees A.Beller M. Adv. Synth. Catal. 2004, 346: 1742 -
9a
Ackermann L.Spatz J.Gschrei GJ.Born R.Althammer A. Angew. Chem. Int. Ed. 2006, 45: 7627 -
9b
Ackermann L.Born R. Angew. Chem. Int. Ed. 2005, 44: 2444 - 10
Lerebours R.Soto AC.Wolf C. J. Org. Chem. 2005, 70: 8601 -
11a
Gudat D. Coord. Chem. Rev. 1997, 163: 71 -
11b
Nakazawa H. Adv. Organomet. Chem. 2004, 50: 107 - 12
Mai WP.Gao LX. Synlett 2006, 2553 -
Heinrich L.Michael L.Laszlo Z. J. Organomet. Chem. 1990, 386: 349 -
13a
Synthesis of (2,6- t -Bu 2 -4-MeC 6 H 2 O)PCl 2 ( 2): To a flame-dried three-necked flask equipped with an addition funnel were added anhyd Et3N (27 mL, 200 mmol), freshly distilled PCl3 (26 mL, 300 mmol) and anhyd toluene (200 mL). 2,6-Di-tert-butyl-4-methylphenol (22 g, 100 mmol) dissolved in anhyd toluene (100 mL) was transferred into an addition funnel and was added dropwise to the solution of PCl3 at 0 °C within one hour. The reaction mixture was stirred for 2 h at r.t. and then for 8 h at 100 °C, after which time the Et3N·HCl precipitate was isolated by filtration over a celite frit and washed with toluene (3 × 50 mL). The solvent was removed under reduced pressure, and the residual mixture was distilled at 120 °C/0.1 Torr giving 2 as a colorless liquid (70%). 1H NMR (600 MHz, CDCl3): δ = 1.46 (s, 18 H), 2.30 (s, 3 H), 7.10 (s, 2 H). 31P NMR (242.9 MHz, CDCl3): δ = 201.9 (s). Anal. Calcd for C15H23OPCl2: C, 56.09; H, 7.22; P, 9.64. Found: C, 56.02; H, 7.06; P, 9.10 -
16a
Tang ZY.Hu QS. J. Am. Chem. Soc. 2004, 126: 3058 -
16b
Zeng FL.Yu ZK. J. Org. Chem. 2006, 71: 5274 -
16c
Nishimura M.Ueda M.Miyaura N. Tetrahedron 2002, 58: 5779 -
16d
Iwasawa T.Ajami D.Rebek J. Org. Lett. 2006, 8: 2925 -
16e
Mino T.Shirae Y.Sakamoto M.Fujita T. J. Org. Chem. 2005, 70: 2191 -
16f
McNulty J.Capretta A.Wilson J.Dyck J.Adjabeng G.Robertson A. Chem. Commun. 2002, 1986
References and Notes
Synthesis of (2,6- t -Bu 2 -4-MeC 6 H 2 O)P(Cl) t -Bu (1): To a flame-dried two-necked flask equipped with an addition funnel were added 2 (1.6 g, 5 mmol) and anhyd Et2O (50 mL) at 0 °C. t-BuMgCl [7.4 mL (1.7 M/L in THF solution), 12.5 mmol] was transferred into an addition funnel and was added dropwise to the stirred solution within 0.5 h. The ice bath was removed and the stirring was continued at r.t. for 20 h and then the mixture was refluxed for 2 h. The solvent was removed under reduced pressure and the residual mixture was extracted with Et2O, washed with aq NaHCO3 (3 × 30 mL) and dried over Na2SO4. The solution was filtered and Et2O was removed and then the residue was recrystallized from absolute ethanol to give 1 as a white solid (83%). 1H NMR (600 MHz, CDCl3): δ = 1.32 (d, J = 12 Hz, 9 H), 1.43 (s, 18 H), 2.27 (s, 3 H), 7.03 (s, 2 H). 31P NMR (242.9 MHz, CDCl3): δ = 217.2 (s). Anal. Calcd for C19H32OPCl: C, 66.55; H, 9.41. Found: C, 66.31; H, 8.72. GC-MS: m/z = 342 [M+].
15
General Procedure for the Suzuki Reaction:
A mixture of aryl chlorides 5a-j (1.5 mmol), arylboronic acid 6a-c (1.7 mmol), Pd2(dba)3 (0.0075 mmol), 1 (0.015 mmol), t-BuOK (3 mmol), and THF (5 mL) was added to a flask and stirred at 65 °C under N2 for the desired time until complete consumption of the starting substrates was observed (as judged by TLC). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (PE-EtOAc) to afford the desired coupled products.
Compound 7:4a 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.0 Hz, 4 H), 7.44 (t, J = 7.2 Hz, 4 H), 7.34 (tt, J = 7.2 Hz, J′ = 1.2 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 141.2, 128.7, 127.2, 127.1.
Compound 8:9b 1H NMR (600 MHz, CDCl3): δ = 7.39 (t, J = 7.2 Hz, 2 H), 7.32 (t, J = 7.2 Hz, 3 H), 7.22-7.25 (m, 4 H), 2.26 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 141.9, 135.2, 130.2, 129.7, 129.1, 128.0, 127.2, 126.7, 125.7, 20.4.
Compound 9:9b 1H NMR (600 MHz, CDCl3): δ = 7.58 (d, J = 7.2 Hz, 2 H), 7.38-7.44 (m, 4 H), 7.34 (t, J = 7.2 Hz, 2 H), 7.17 (d, J = 7.8 Hz, 1 H), 2.42 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 141.3, 141.2, 138.2, 128.6, 127.9, 127.1, 124.2, 21.5.
Compound 10:16a 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 8.0 Hz, 4 H), 7.24 (d, J = 8.0 Hz, 4 H), 2.39 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 138.2, 136.6, 129.4, 126.8, 21.1.
Compound 11:16b 1H NMR (300 MHz, CDCl3): δ = 8.07 (d, J = 6.6 Hz, 2 H), 7.72 (d, J = 6.6 Hz, 2 H), 7.58 (d, J = 6.0 Hz, 2 H), 7.33 (d, J = 9.0 Hz, 2 H), 2.67 (s, 3 H), 2.45 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 197.7, 145.7, 138.2, 137.0, 135.6, 129.6, 128.9, 127.1, 126.9, 26.6, 21.1.
Compound 12:16c 1H NMR (600 MHz, CDCl3): δ = 7.71 (dd, J = 8.4 Hz, J′ = 16.2 Hz, 4 H), 7.5 (d, J = 8.4 Hz, 2 H), 7.29 (d, J = 8.4 Hz, 2 H), 2.41 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 145.6, 138.7, 136.3, 132.5, 129.8, 127.4, 127.0, 119.0, 110.5, 21.1.
Compound 13:16d 1H NMR (400 MHz, CDCl3): δ = 8.84 (d, J = 2.0 Hz, 1 H), 8.57 (d, J = 3.6 Hz, 1 H), 7.87 (dt, J = 8.0 Hz, J′ = 2.0 Hz, 1 H), 7.49 (d, J = 8.0 Hz, 2 H), 7.37 (dd, J = 4.8 Hz, J′ = 3.2 Hz, 1 H), 7.30 (d, J = 8.0 Hz, 2 H), 2.41 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 148.1, 148.0, 138.0, 136.6, 134.8, 134.2, 129.8, 126.9, 123.5, 21.1.
Compound 14:16b 1H NMR (400 MHz, CDCl3): δ = 10.1 (s, 1 H), 7.97 (d, J = 8.4 Hz, 2 H), 7.77 (d, J = 8.4 Hz, 2 H), 7.65 (d, J = 7.2 Hz, 2 H), 7.50 (t, J = 7.2 Hz, 2 H), 7.40-7.43 (m, 1 H). 13C NMR (150 MHz, CDCl3): δ = 191.9, 147.1, 139.7, 135.1, 130.2, 129.0, 128.4, 127.6, 127.3.
Compound 15:4a,9b 1H NMR (400 MHz, CDCl3): δ = 7.54 (t, J = 8.0 Hz, 4 H), 7.41 (t, J = 7.6 Hz, 2 H), 7.30 (t, J = 7.2 Hz, 1 H), 6.99 (dt, J = 8.8 Hz, J′ = 2.0 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 159.1, 140.8, 133.8, 128.7, 128.1, 126.7, 126.6, 114.2, 55.3.
Compound 16:16e 1H NMR (300 MHz, CDCl3): δ = 7.72 (t, J = 7.2 Hz, 8 H), 7.52 (t, J = 7.2 Hz, 4 H), 7.47 (t, J = 7.2 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 140.7, 140.1, 128.8, 127.5, 127.3, 127.0.
Compound 17:6e 1H NMR (400 MHz, CDCl3): δ = 8.05 (d, J = 8.4 Hz, 2 H), 7.70 (d, J = 8.4 Hz, 2 H), 7.64 (d, J = 7.2 Hz, 2 H), 7.48 (t, J = 7.2 Hz, 2 H), 7.40 (t, J = 7.2 Hz, 1 H), 2.64 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 197.7, 145.8, 139.9, 135.8, 128.94, 128.9, 128.2, 127.26, 127.21, 26.7.
Compound 18:7f,9b 1H NMR (400 MHz, CDCl3): δ = 8.86 (d, J = 0.8 Hz, 1 H), 8.60 (d, J = 4.8 Hz, 1 H), 7.88 (dt, J = 8.0 Hz, J′ = 2.0 Hz, 1 H), 7.59 (d, J = 7.2 Hz, 2 H), 7.48 (t, J = 7.2 Hz, 2 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.34-7.36 (m, 1 H). 13C NMR (150 MHz, CDCl3): δ = 148.4, 148.22, 137.7, 136.6, 134.3, 129.0, 128.0, 127.0, 123.5.
Compound 19:16f 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.0 Hz, 2 H), 7.64 (d, J = 8.0 Hz, 2 H), 7.32-7.39 (m, 2 H), 7.00-7.07 (m, 2 H), 3.85 (s, 3 H), 2.63 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 197.8, 156.4, 143.6, 135.5, 130.7, 129.7, 129.4, 128.0, 120.9, 111.3, 55.5, 26.6.