References and Notes
<A NAME="RW09107ST-1A">1a</A>
Perlmuter P. In
Conjugate Addition Reaction in Organic Synthesis, In Tetrahedron Organic Chemistry Series, No. 9
Pergamon Press;
Oxford:
1992.
p.1
<A NAME="RW09107ST-1B">1b</A>
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E. In
Stereoselective Synthesis. Houben-Weyl, Methods of Organic Chemistry
Vol. E21b, 4th ed.:
Georg Thieme Verlag;
Stuttgart:
1995.
p.1041
<A NAME="RW09107ST-2A">2a</A>
Knochel P.
Singer RD.
Chem. Rev.
1993,
93:
2117
<A NAME="RW09107ST-2B">2b</A>
Knochel P.
Prea JA.
Jones P.
Tetrahedron
1998,
54:
8275
<A NAME="RW09107ST-3A">3a</A>
Duursma A.
Minnaard AJ.
Feringa BL.
J. Chem. Soc.
2003,
125:
3700
<A NAME="RW09107ST-3B">3b</A>
Hird AW.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
1276
<A NAME="RW09107ST-3C">3c</A>
Degrado SJ.
Mizutani H.
Hoveyda AH.
J. Am. Chem. Soc.
2002,
124:
13362
<A NAME="RW09107ST-3D">3d</A>
Gallo E.
Ragaini F.
Licia B.
Piarulli U.
J. Organomet. Chem.
2004,
689:
2169
<A NAME="RW09107ST-3E">3e</A>
Knopff O.
Alexakis A.
Org. Lett.
2002,
4:
3835
<A NAME="RW09107ST-3F">3f</A>
Mampreian DM.
Hoveyda AD.
Org. Lett.
2004,
6:
2829
<A NAME="RW09107ST-3G">3g</A>
Bräse S.
Höfener S.
Angew. Chem. Int. Ed.
2005,
44:
7879
<A NAME="RW09107ST-3H">3h</A>
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
<A NAME="RW09107ST-4A">4a</A>
Lipshutz BH.
Wood MR.
Tirado R.
J. Am. Chem. Soc.
1995,
11:
6126
<A NAME="RW09107ST-4B">4b</A>
Maezaki N.
Sawamto H.
Yoshigami R.
Suzuki T.
Tanaka T.
Org. Lett.
2003,
5:
1345
<A NAME="RW09107ST-4C">4c</A>
Yuguchi M.
Tokuda M.
Orito K.
Chem. Lett.
2004,
33:
674
<A NAME="RW09107ST-4D">4d</A>
Yuguchi M.
Tokuda M.
Orito K.
Bull. Chem. Soc. Jpn.
2004,
1031
<A NAME="RW09107ST-5A">5a</A>
Ongeri S.
Piarulli U.
Jackson RFW.
Gennari C.
Eur. J. Org. Chem.
2001,
803
<A NAME="RW09107ST-5B">5b</A>
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
<A NAME="RW09107ST-6A">6a</A>
Namboothiri INN.
Hassner A.
J. Organomet. Chem.
1996,
518:
69
<A NAME="RW09107ST-6B">6b</A>
Yao C.-F.
Kao K.-H.
Liu J.-T.
Chu C.-M.
Wang Y.
Tetrahedron
1998,
54:
791
<A NAME="RW09107ST-7">7</A>
Ashwood MS.
Bell LA.
Houghton PG.
Wright SHB.
Synthesis
1988,
379
<A NAME="RW09107ST-8">8</A>
Knochel P.
Seebach D.
Tetrahedron Lett.
1981,
22:
3223
<A NAME="RW09107ST-9">9</A>
Pecunioso A.
Menicagli R.
J. Org. Chem.
1988,
53:
45
<A NAME="RW09107ST-10">10</A>
Zhang JM.
Zhang YM.
Chin. J. Chem.
2002,
20:
296
<A NAME="RW09107ST-11">11</A>
Bao WL.
Zheng YF.
Zhang YM.
J. Chem. Res., Synop.
1999,
732
<A NAME="RW09107ST-12">12</A>
Kumar HMS.
Reddy BVS.
Reddy PT.
Yadav JS.
Tetrahedron Lett.
1999,
40:
5387
<A NAME="RW09107ST-13A">13a</A>
Wang J.-X.
Fu Y.
Hu YL.
Angew. Chem. Int. Ed.
2002,
41:
2757
<A NAME="RW09107ST-13B">13b</A>
Wang J.-X.
Wang K.
Zhao L.
Fu Y.
Hu YL.
Adv. Synth. Catal.
2006,
348:
1262
<A NAME="RW09107ST-13C">13c</A>
Hu YL.
Yu JH.
Yang S.
Wang J.-X.
Synlett
1998,
1213
<A NAME="RW09107ST-14A">14a</A>
Hu YL.
Yu JH.
Wang J.-X.
Yin YQ.
Synth. Commun.
1998,
28:
2793
<A NAME="RW09107ST-14B">14b</A>
Hu YL.
Yu JH.
Wang J.-X.
Yin YQ.
Chin. Chem. Lett.
1998,
9:
699
<A NAME="RW09107ST-14C">14c</A>
Huang DF.
Yang Y.
Wang J.-X.
Hu YL.
J. Chem. Res., Synop.
2002,
79
<A NAME="RW09107ST-15">15</A>
Wang J.-X.
Jia XF.
Meng TJ.
Xin L.
Synthesis
2005,
2838
<A NAME="RW09107ST-16">16</A>
Menicagli R.
Samaritani S.
Tetrahedron
1996,
52:
1425
<A NAME="RW09107ST-17">17</A>
Berk SC.
Jeong MCPN.
Knochel P.
Organometallics
1990,
9:
3053
<A NAME="RW09107ST-18">18</A>
General Procedure for the Reaction: Organozinc halides RZnX (8 mmol and 10 mmol for
allyl bromide and benzyl bromide, respectively) were prepared according to Knochel’s
procedure.
[17]
The solvent (THF) was removed in vacuo and then the nitroalkene (4 mmol) was added
slowly. The resulting reaction mixture was stirred for the duration of the given time.
After complete conversion, as indicated by TLC, sat. NH4Cl solution (10 mL) and Et2O (10 mL) were added and the mixture was stirred for 10 min. The organic layer was
separated and washed with sat. brine (10 mL), dried over anhyd MgSO4 and concentrated. The pure product was obtained by column chromatography of the crude
mixture on silica gel using PE-EtOAc as eluent.
<A NAME="RW09107ST-19">19</A>
1-Nitro-2-phenylpent-4-ene (2a): pale yellow oil. IR (KBr): 3073, 3030, 2922, 2853, 1641, 1548, 1451, 1434 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.17-7.34 (m, 5 H), 5.60-5.70 (m, 1 H), 5.02-5.09 (m, 2 H), 4.51-4.64 (m, 2
H), 3.52-3.60 (m, 1 H), 2.38-2.56 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 134.1, 128.8, 127.6, 127.4, 118.1, 79.8, 43.7, 37.6. EI-MS: m/z = 241 [M+], 211, 104, 91, 77. Anal. Calcd for C11H13NO2: C, 69.09; H, 6.85; N, 7.32. Found: C, 68.46; H, 6.93; N, 6.57.
<A NAME="RW09107ST-20">20</A>
1-Nitro-3-phenyl-2-(2-furyl)propane (3l): yellow oil. IR (KBr): 3063, 3030, 2924, 2860, 1551, 1501, 1451, 1431cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.37 (dd, J = 0.8, 2.0 Hz, 1 H), 7.20-7.30 (m, 3 H), 7.06-7.08 (m, 2 H), 6.26-6.27 (m, 1 H),
6.03-6.04 (m, 1 H), 4.61 (dd, J = 8.0, 12.8 Hz, 1 H), 4.52 (dd, J = 6.4, 12.8 Hz, 1 H), 3.85-3.92 (m, 1 H), 3.11 (dd, J = 7.6, 13.6 Hz, 1 H), 2.94 (dd, J = 7.6, 13.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 151.9, 142.2, 137.4, 129.0, 128.6, 127.0, 110.4, 107.5, 77.3, 39.6, 37.3. EI-MS:
m/z = 231 [M+], 184, 91, 77. Anal. Calcd for C13H13NO3: C, 67.52; H, 5.67; N, 6.06. Found: C, 68.16; H, 5.27; N, 5.40.