Zusammenfassung
Durch oxidativen Stress induzierte Schäden können durch spezifische Biomarker quantifiziert
werden, die zur Aufklärung der Bedeutung von oxidativen Stressvorgängen in der Ätiologie
von Krankheiten beitragen könnten. Ein großes Problem ist dabei allerdings die Vielzahl
der Methoden, mit denen sowohl oxidative Schäden als auch Veränderungen in der Antioxidanzienabwehr
erfasst werden können. Viele Erkrankungen wie z. B. Arteriosklerose, Krebs, Morbus
Alzheimer, Morbus Parkinson, altersabhängige Makuladegeneration und Strahlenschäden
werden mit oxidativem Stress und den damit verbundenen zellulären Schäden in Verbindung
gebracht. Dabei ist oxidativer Stress oft nicht auslösendes Ereignis, sondern eher
begleitender pathophysiologischer Faktor. Die verschiedenen Methoden zur Charakterisierung
von oxidativem Stress zeichnen sich durch große Unterschiede in der Spezifität, Genauigkeit,
Reproduzierbarkeit als auch Machbarkeit unter In-vivo-Bedingungen aus. Hinzu kommen
große individuelle Schwankungen in der basalen oxidativen Schädigung als auch in der
antioxidativen Abwehr, wodurch bis heute eine einheitliche Etablierung von Referenzwerten
nicht möglich ist. In diesem Übersichtsartikel sollen die Möglichkeiten der Erfassung
von oxidativem Stress hinsichtlich der zur Verfügung stehenden Methoden und deren
Vor- und Nachteile beleuchtet werden. Die Biomarker für oxidativen Stress werden dabei
unter dem Aspekt der Eignung als klinische Biomarker diskutiert.
Abstract
Oxidative stress induced damage can by quantified by specific biomarkers which might
contribute to the clarification of the impact of oxidative stress reactions in the
etiology of diseases. A major problem hereby results from the multitude of methods
measuring oxidative damage and changes in antioxidative defence. Many diseases like
arteriosclerosis, cancer, Morbus Alzheimer, Morbus Parkinson, age-related macular
degeneration and radiation damage are associated with oxidative stress and related
cellular damage. Thereby, oxidative stress is not the causing event but rather an
accompanying pathophysiological factor. Many methods for the determination of oxidative
stress are characterized by major differences in specifity, accuracy, reproducibility,
as well as feasibility under in vivo conditions. Additionally, there is a great individual
variation in basal oxidative damage as well as antioxidative defence, making the establishment
of reference values impossible. This review article focuses on possibilities of assessing
oxidative stress with regard to available methods, their advantages, and disadvantages.
Especially the reliability of biomarkers of oxidative stress in clinical settings
is discussed.
Schlüsselwörter
oxidativer Stress - Biomarker - Antioxidanzien - klinische Relevanz - Referenzwerte
Key words
oxidative stress - biomarkers - antioxidants - clinical relevance - reference values
Literatur
1
Halliwell B.
Free radicals, antioxidants, and human disease: curiosity, cause or consequence?.
Lancet.
1994;
344
721-724
2
Fridovich I.
Overview: biological sources of O2
- .
Methods Enzymol.
1984;
105
59-61
3
Marnett L J.
Oxyradicals and DNA damage.
Carcinogenesis.
2000;
21 (3)
361-370
4
Breen A P, Murphy J A.
Reactions of oxyl radicals with DNA.
Free Radic Biol Med.
1995;
18
1033-1077
5
Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin S A, Petit P X,
Mignotte B, Kroemer G.
Sequential reduction of mitochondrial transmembrane potential and generation of reactive
oxygen species in early programmed cell death.
J Exp Med.
1995;
182
367-377
6
Chang H, Oehrl W, Elsner P, Thiele J J.
The role of H2O2 as a mediator of UVB-induced apoptosis in keratinocytes.
Free Radic Res.
2003;
37
655-63
7
Burdon R H, Rice-Evans C.
Free radicals and the regulation of mammalian cell proliferation.
Free Radic Res Commun.
1989;
6
345-358
8
Klann E, Roberson E D, Knapp L T, Sweatt J D.
A role for superoxide in protein kinase C activation and induction of long-term potentiation.
J Biol Chem.
1998;
273
4516-4522
9
Abe J, Okuda M, Huang Q, Yoshizumi M, Berk B C.
Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras.
J Biol Chem.
2000;
275
1739-1748
10
Meyer M, Pahl H L, Baeuerle P A.
Regulation of the transcription factors NF-kappa B and AP-1 by redox changes.
Chem Biol Interact.
1994;
91
91-100
11
Sies H.
Biochemistry of oxidative stress.
Angew Chem Int Ed Engl.
1986;
25
1058-1071
12
Suzuki Y J, Forman H J, Sevanian A.
Oxidants as stimulators of signal transduction.
Free Radic Biol Med.
1997;
22
269-285
13
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J.
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol.
2007;
39
44-84
14
Narkowicz C K, Vial J H, McCartney P W.
Hyperbaric oxygen therapy increases free radical levels in the blood of humans.
Free Radic Res Commun.
1993;
19
71-80
15
Schneider M, Diemer K, Engelhart K, Zankl H, Trommer W E, Biesalski H K.
Protective effects of vitamins C and E on the number of micronuclei in lymphocytes
in smokers and their role in ascorbate free radical formation in plasma.
Free Radic Res.
2001;
34
209-219
16
Margolis S A, Duewer D L.
Measurement of ascorbic acid in human plasma and serum: stability, intralaboratory
repeatability, and interlaboratory reproducibility.
Clin Chem.
1996;
42
1257-1262
17 Gibson R S. Principles of Nutritional Assessment. New York, NY; Oxford University
Press 1990
18
Elsayed N M.
Antioxidant mobilization in response to oxidative stress: a dynamic environmental-nutritional
interaction.
Nutrition.
2001;
17
828-834
19
Pincemail J, Deby C, Camus G, Pirnay F, Bouchez R, Massaux L, Goutier R.
Tocopherol mobilization during intensive exercise.
Eur J Appl Physiol Occup Physiol.
1988;
57
189-191
20
Urso M L, Clarkson P M.
Oxidative stress, exercise,and antioxidant supplementation.
Toxicol.
2003;
189
41-54
21
Waring W S, Webb D J, Maxwell S R.
Uric acid as a risk factor for cardiovascular disease.
QJM.
2000;
93
707-713
22
Griffiths H R, Moller L, Bartosz G, Bast A, Bertoni-Freddari C, Collins A, Cooke M,
Coolen S, Haenen G, Hoberg A M, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H,
Verhagen H, Astley S B.
Biomarkers.
Mol Aspects Med.
2002;
23
101-208
23
Karel M, Schaich K, Roy R B.
Interaction of peroxidizing methyl linoleate with some proteins and amino acids.
J Agric Food Chem.
1975;
23
159-163
24
Dean R T, Fu S, Stocker R, Davies M J.
Biochemistry and pathology of radical-mediated protein oxidation.
Biochem J.
1997;
324
1-18
25
Girotti A W, Kriska T.
Role of lipid hydroperoxides in photo-oxidative stress signaling.
Antioxid Redox Signal.
2004;
6
301-310
26
Cathcart R, Schwiers E, Ames B N.
Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent
assay.
Methods Enzymol.
1984;
105
352-358
27
Heaton F W, Uri N.
Improved iodometric methods for the determination of lipid peroxides.
J Sci Food Agric.
1958;
9
781-786
28
Chapman R A, McFarlane W D.
A colorimetric method for the determination of fat peroxides and its application in
the study of the keeping quality of milk powder.
Cand J Res.
1943;
21
133ff
29
Jiang Z Y, Hunt J V, Wolff S P.
Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide
in low density lipoprotein.
Anal Biochem.
1992;
202
384-389
30
Jiang Z Y, Woollard A C, Wolff S P.
Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric
method.
Lipids.
1991;
26
853-856
31
Smith L L, Hill F L.
Detections of sterol hydroperoxides of thin-layer chromatoplates by means of Wurster
dyes.
J Chromatogr.
1972;
66
101-109
32
Hamm D L, Hammond E G, Parvanah V, Snyder H E.
The determination of peroxides by the Stamm method.
J Am Oil Chem Soc.
1965;
42
920-922
33
Eiss M I, Giesecke P.
Colorimetric determination of organic peroxides.
Anal Chem.
1959;
31
1558-1560
34
Auerbach B J, Kiely J S, Cornicelli J A.
A spectrophotometric microtiter-based assay for the detection of hydroperoxy derivatives
of linoleic acid.
Anal Biochem.
1992;
201
375-380
35
Marnett L J.
Oxy radicals, lipid peroxidation and DNA damage.
Toxicology.
2002;
181 - 182
219-222
36
Niedernhofer L J, Daniels J S, Rouzer C A, Greene R E, Marnett L J.
Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells.
J Biol Chem.
2003;
278
31426-31433
37
Chia L S, Thompson J E, Moscarello M A.
X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's
disease.
Biochim Biophys Acta.
1984;
775
308-312
38
Benedetti A, Comporti M.
Formation, Reactions and Toxicity of Aldehydes produced in the course of Lipid Peroxidation
in Cellular Membranes.
Biochemistry and Bioenergetics.
1987;
18
187-202
39
Esterbauer H, Schaur R J, Zollner H.
Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.
Free Radic Biol Med.
1991;
11
81-128
40
Buege J A, Aust S D.
Microsomal lipid peroxidation.
Methods Enzymol.
1978;
52
302-310
41
Du Z, Bramlage W J.
Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant
tissue extracts.
Journal of Agricultural and Food Chemistry.
1992;
40
1566-1570
42
Yoshimura Y, Koike S, Tanaka H, Tamura K, Ohsawa K, Imaeda K, Akiyama S, Nakashima K.
Fluorometric determination of lipid peroxides in tissues with 1,3-dephenyl-2-thiobarbituric
acid.
Anal Sci.
1988;
4
207-210
43
Gray J I.
Measurement of lipid oxidation: A review.
J Am Oil Chem Soc.
1977;
55
539-546
44
Wong S H, Knight J A, Hopfer S M, Zaharia O, Leach C N, Sundermann F W.
Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric
acid adduct.
Clin Chem.
1987;
33
214-220
45
Sommerburg O, Grune T, Klee S, Ungemach F R, Siems W G.
Formation of 4-hydroxynonenal and further aldehydic mediators of inflammation during
bromotrichloromethane treatment of rat liver cells.
Med Inflamm.
1993;
2
27-31
46
Grune T, Siems W, Werner A, Gerber G, Kostic M, Esterbauer H.
Aldehyde and nucleotide separations by high-performance liquid chromatography. Application
to phenylhydrazine-induced damage of erythrocytes and reticulocytes.
J Chromatogr.
1990;
520
411-417
47
Wade C R, van Rij A M.
In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane,
pentane, and other low-molecular-weight hydrocarbons.
Anal Biochem.
1985;
150
1-7
48
Esterbauer H.
Estimation of peroxidative damage. A critical review.
Pathol Biol (Paris).
1996;
44
25-28
49
Grune T, Siems W, Kowalewski J, Zollner H, Esterbauer H.
Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal
by enterocytes of rat small intestine.
Biochem Int.
1991;
25
963-971
50
Morrow J D, Hill K E, Burk R F, Nammour T M, Badr K F, Roberts 2nd
L J.
A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase,
free radical-catalyzed mechanism.
Proc Natl Acad Sci U S A.
1990;
87
9383-9387
51
Basu S.
Isoprostanes: novel bioactive products of lipid peroxidation.
Free Radic Res.
2004;
38
105-122.
52
Montuschi P, Barnes P J, Roberts 2nd
L J.
Isoprostanes: markers and mediators of oxidative stress.
FASEB J.
2004;
18
1791-1800
53
Smith L L.
Review of progress in sterol oxidations: 1987 - 1995.
Lipids.
1996;
31
453-487
54
Sevanian A, McLeod L L.
Cholesterol autoxidation in phospholipid membrane bilayers.
Lipids.
1987;
22
627-636
55
Salonen J T, Nyyssonen K, Salonen R, Porkkala-Sarataho E, Tuomainen T P, Diczfalusy U,
Bjorkhem I.
Lipoprotein oxidation and progression of carotid atherosclerosis.
Circulation.
1997;
95
840-845
56
Zieden B, Kaminskas A, Kristenson M, Kucinskiene Z, Vessby B, Olsson A G, Diczfalusy U.
Increased plasma 7 beta-hydroxycholesterol concentrations in a population with a high
risk for cardiovascular disease.
Arterioscler Thromb Vasc Biol.
1999;
19
967-971
57
Bansal G, Singh U, Bansal M P.
Effect of 7beta-hydroxycholesterol on cellular redox status and heat shock protein
70 expression in macrophages.
Cell Physiol Biochem.
2001;
11
241-246
58
Zhou Q, Wasowicz E, Handler B, Fleischer L, Kummerow F A.
An excess concentration of oxysterols in the plasma is cytotoxic to cultured endothelial
cells.
Atherosclerosis.
2000;
149
191-197
59
Smith L L, Johnson B H.
Biological activities of oxysterols.
Free Radic Biol Med.
1989;
7
285-332
60
Kandutsch A A, Chen H W.
Inhibition of sterol synthesis in cultured mouse cells by 7alpha-hydroxycholesterol,
7beta-hydroxycholesterol, and 7-ketocholesterol.
J Biol Chem.
1973;
248
8408-8417
61
Linseisen J, Wolfram G, Miller A B.
Plasma 7beta-hydroxycholesterol as a possible predictor of lung cancer risk.
Cancer Epidemiol Biomarkers Prev.
2002;
11
1630-1637
62
Stadtman E R, Levine R L.
Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.
Amino Acids.
2003;
25
207-218
63
Beckman J S, Ye Y Z, Anderson P G, Chen J, Accauitti M A, Tarpey M M, White C R.
Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry.
Biol Chem Hoppe Seyler.
1994;
375
81-88
64
Thuraisingham R C, Nott C A, Dodd S M, Yaqoob M M.
Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy.
Kidney Int.
2000;
57
1968-1972
65
Smith M A, Sayre L M, Anderson V E, Harris P L, Beal M F, Kowall N, Perry G.
Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical
enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine.
J Histochem Cytochem.
1998;
46
731-735
66
Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke J W.
Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o′-dityrosine
in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model
of oxidative stress in Parkinson's disease.
J Biol Chem.
1999;
274
34621-34628
67
Cuzzocrea S, Zingarelli B, Villari D, Caputi A P, Longo G.
Evidence for in vivo peroxynitrite production in human chronic hepatitis.
Life Sci.
1998;
63
PL25-30
68
Stadtman E R.
Protein oxidation in aging and age-related diseases.
Ann N Y Acad Sci.
2001;
928
22-38
69
Thiele J J, Hsieh S N, Briviba K, Sies H.
Protein oxidation in human stratum corneum: susceptibility of keratins to oxidation
in vitro and presence of a keratin oxidation gradient in vivo.
J Invest Dermatol.
1999;
113
335-339
70
Sander C S, Chang H, Salzmann S, Muller C S, Ekanayake-Mudiyanselage S, Elsner P,
Thiele J J.
Photoaging is associated with protein oxidation in human skin in vivo.
J Invest Dermatol.
2002;
118
618-625
71
Shigenaga M K, Lee H H, Blount B C, Christen S, Shigeno E T, Yip H, Ames B N.
Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical
detection.
Proc Natl Acad Sci U S A.
1997;
94
3211-3216
72
Ischiropoulos H.
Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive
oxygen species.
Arch Biochem Biophys.
1998;
356
1-11
73
Hammer C, Braum E.
Quantification of age pigments (lipofuscin).
Comp Biochem Physiol B.
1988;
90
7-17
74
Mrak R E, Griffin S T, Graham D I.
Aging-associated changes in human brain.
J Neuropathol Exp Neurol.
1997;
56
1269-1275
75
Tsikas D, Caidahl K.
Recent methodological advances in the mass spectrometric analysis of free and protein-associated
3-nitrotyrosine in human plasma.
J Chromatogr B Analyt Technol Biomed Life Sci.
2005;
814
1-9
76
Levine R L, Williams J A, Stadtman E R, Shacter E.
Carbonyl assays for determination of oxidatively modified proteins.
Methods Enzymol.
1994;
233
346-357
77
Buss H, Chan T P, Sluis K B, Domigan N M, Winterbourn C C.
Protein carbonyl measurement by a sensitive ELISA method.
Free Radic Biol Med.
1997;
23
361-366
78
Shacter E.
Quantification and significance of protein oxidation in biological samples.
Drug Metab Rev.
2000;
32
307-326
79
Sonntag C von.
New aspects in the free-radical chemistry of pyrimidine nucleobases.
Free Radic Res Commun.
1987;
2
217-224
80
Dizdaroglu M.
Oxidative damage to DNA in mammalian chromatin.
Mutat Res.
1992;
275
331-342
81
Nackerdien Z, Rao G, Cacciuttolo M A, Gajewski E, Dizdaroglu M.
Chemical nature of DNA-protein cross-links produced in mammalian chromatin by hydrogen
peroxide in the presence of iron or copper ions.
Biochemistry.
1991;
30
48730-48739
82
Kasai H, Nishimura S.
Formation of 8-hydroxyguanine by oxidative DNA damage, its repair and its mutagenic
effects.
Adv Mutagen Res.
1993;
4
31-45
83
Moriya M.
Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine
in DNA induces targeted G.C→T.A transversions in simian kidney cells.
Proc Natl Acad Sci U S A.
1993;
90
1122-1126
84
Halliwell B, Dizdaroglu M.
The measurement of oxidative damage to DNA by HPLC and GC/MS techniques.
Free Radic Res Commun.
1992;
16
75-87
85
Weimann A, Belling D, Poulsen H E.
Measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA and human
urine by high performance liquid chromatography-electrospray tandem mass spectrometry.
Free Radic Biol Med.
2001;
30
757-764
86
Park E M, Shigenaga M K, Degan P, Korn T S, Kitzler J W, Wehr C M, Kolachana P, Ames B N.
Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside
derivatives from biological fluids with a monoclonal antibody column.
Proc Natl Acad Sci U S A.
1992;
89
3375-3379
87
Soultanakis R P, Melamede R J, Bespalov I A, Wallace S S, Beckman K B, Ames B N, Taatjes D J,
Janssen-Heininger Y M.
Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured
cells using a recombinant Fab and confocal scanning laser microscopy.
Free Radic Biol Med.
2000;
28
987-998
88
Gedik C M, Wood S G, Collins A R.
Measuring oxidative damage to DNA; HPLC and the comet assay compared.
Free Radic Res.
1998;
29
609-615
89
Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L,
Panayiotidis M, Raslova K, Vaughan N.
Comet assay in human biomonitoring studies: reliability, validation, and applications.
Environ Mol Mutagen.
1997;
30
139-146
90
Loft S, Poulsen H E.
Estimation of oxidative DNA damage in man from urinary excretion of repair products.
Acta Biochim Pol.
1998;
45
133-144
91
Cooke M S, Evans M D, Herbert K E, Lunec J.
Urinary 8-oxo-2′-deoxyguanosine-source, significance and supplements.
Free Radic Res.
2000;
32
381-397
92
Shigenaga M K, Gimeno C J, Ames B N.
Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA
damage.
Proc Natl Acad Sci U S A.
1989;
86
9697-9701
93
Hwang E S, Bowen P E.
DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet
and environment.
Crit Rev Food Sci Nutr.
2007;
47
27-50
94
Ghiselli A, Serafini M, Patella F, Scaccini C.
Total antioxidant capacity as a tool to adress redox status: critical view and experimental
data.
Free Rad Biol Med.
2000;
29
1106-1114
95
Benzie I FF, Strain J J.
The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power”:
the FRAP assay.
Anal Biochem.
1996;
239
70-76
96
Wayner D D, Burton G W, Ingold K U, Locke S.
Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability
of human blood plasma by controlled peroxidation. The important contribution made
by plasma proteins.
FEBS Lett.
1985;
187
33-37
97
Cao G, Alessio H M, Cutler R G.
Oxygen-radical absorbance capacity assay for antioxidants.
Free Radic Biol Med.
1993;
14
303-311
98
Miller N J, Rice-Evans C, Davies M J, Gopinathan V, Milner A.
A novel method for measuring antioxidant capacity and its application to monitoring
the antioxidant status in premature neonates.
Clin Sci.
1993;
84
407-412
99
Glazer A N.
Phycoerythrin fluorescence-based assay for reactive oxygen species.
Methods Enzymol.
1990;
186
161-168
100
Esterbauer H, Striegl G, Puhl H, Rotheneder M.
Continuous monitoring of in vitro oxidation of human low density lipoprotein.
Free Radic Res Commun.
1989;
6
67-75
101
Sies H.
Total antixidant capacity: appraisal of a concept.
J Nutr.
2007;
137
1493-1495
102
Lotito S B, Frei B.
Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans:
cause, consequence, or epiphenomenen?.
Free Rad Biol Med.
2006;
41
1727-1746
103 Han D, Loukianoff S, McLaughlin L.
Oxidative stress indices: analytical aspects and significance. In: Hanninen O, Packer L, Sen CK (eds) Handbook of oxidants and antioxidants in exercise. Amsterdam;
Elsevier 2000: 433-484
104
Mayne S T.
Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative
stress status in epidemiologic research.
J Nutr.
2003;
133, Suppl 3
933S-940S
105
Prior R L.
Plasma antioxidant measurements.
J Nutr.
2004;
134
3184S-3185S
106
Cesarone M R, Belcaro G, Carratelli M, Cornelli U, de Sanctis M T, Incandela L, Barsotti A,
Terranova R, Nicolaides A.
A simple test to monitor oxidative stress.
Int Angiol.
1999;
18
127-130
107
Eckert G P, Wegat T, Schaffer S, Theobald S, Müller W E.
Oxidativer Stress: Apothekenrelevante Messmethoden.
Pharmazeutische Zeitung.
2006;
151, No. 24
20-31
108
ESCODD .
Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative
DNA damage. ESCODD (European Standards Committee on Oxidative DNA Damage).
Free Radic Res.
2000;
32
333-341
109
Tamura S, Tsukahara H, Ueno M, Maeda M, Kawakami H, Sekine K, Mayumi M.
Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children,
adolescents and young adults.
Free Radic Res.
2006;
40
1198-1205
110
Steinbrecher U P.
Role of superoxide in endothelial-cell modification of low-density lipoproteins.
Biochim Biophys Acta.
1988;
959
20-30
111
Fuster V, Badimon J J, Badimon L.
Clinical-pathological correlations of coronary disease progression and regression.
Circulation.
1992;
86
1-11
112
Fuster V, Badimon L, Badimon J J, Chesebro J H.
The pathogenesis of coronary artery disease and the acute coronary syndromes (1).
N Engl J Med.
1992;
326
242-250
113
Erhardt J G, Mack H, Sobeck U, Biesalski H K.
Beta-Carotene and alpha-tocopherol concentration and antioxidant status in buccal
mucosal cells and plasma after oral supplementation.
Br J Nutr.
2002;
87
471-475
114
Back E I, Frindt C, Nohr D, Frank J, Ziebach R, Stern M, Ranke M, Biesalski H K.
Antioxidant deficiency in cystic fibrosis: when is the right time to take action?.
Am J Clin Nutr.
2004;
80
374-384
115
Peng Y M, Peng Y S, Lin Y, Moon T, Roe D J, Ritenbaugh C.
Concentrations and plasma-tissue-diet relationships of carotenoids, retinoids, and
tocopherols in humans.
Nutr Cancer.
1995;
23
233-246
116
Morrow J D, Roberts 2nd
L J.
The isoprostanes. Current knowledge and directions for future research.
Biochem Pharmacol.
1996;
51
1-9
Nicolle Breusing
Institut für Biologische Chemie und Ernährungswissenschaft, Lehrstuhl für Biofunktionalität
und Sicherheit der Lebensmittel, Universität Hohenheim
Garbenstraße 28
70593 Stuttgart
Phone: 0711/459-24265
Fax: 0711/459-23840
Email: breusing@uni-hohenheim.de