Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000032.xml
Klinische Neurophysiologie 2008; 39(1): 1-9
DOI: 10.1055/s-2007-986399
DOI: 10.1055/s-2007-986399
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York
Neurophysiologische Diagnostik des transkallosalen Systems bei neurodegenerativen Erkrankungen
Neurophysiological Diagnostics of the Transcallosal System in Neurodegenerative DiseasesFurther Information
Publication History
Publication Date:
27 March 2008 (online)
Weiterbildungsziele
Bei Patienten mit neurodegenerativen Erkrankungen wie Parkinsonsyndromen oder amyotropher Lateralsklerose kann die Untersuchung kallosaler Funktionen mittels transkranieller Magnetstimulation einen wichtigen Beitrag zum pathophysiologischen Verständnis und zur differenzialdiagnostischen Klärung leisten. Die verschiedenen Techniken sowie typische Befunde bei einzelnen Krankheitsentitäten werden beschrieben.
Literatur
- 1 Jacobson S, Trojanowski J Q. The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res. 1974; 74 149-155
- 2 Jones E G, Coulter J D, Wise S P. Commissural columns in the sensorimotor cortex in monkeys. J Comp Neurology. 1979; 181 291-347
- 3 Tomasch J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec. 1954; 119 119-135
- 4 Meyer B-U, Röricht S, Woiciechowsky C. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol. 1998; 43 360-369
- 5 Meyer B U, Röricht S, Niehaus L. Morphology of acallosal brains as assessed by MRI in six patients leading a normal daily life. J Neurol. 1998; 245 106-110
- 6 Aboitz F, Scheibel A B, Fisher R S, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992; 598 (1 - 2) 143-153
- 7 Di Lazarro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell J C. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain res. 1999; 124 520-524
- 8 Conti F, Manzoni T. The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behavioural Brain Res. 1994; 64 37-53
- 9 Sach M, Winkler G, Glauche V, Liepert J, Heimbach B, Koch M A. et al . Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain. 2004; 127 340-350
- 10 Rouiller E M, Babalian A, Kazennikov O. et al . Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res. 1994; 102 227-243
- 11 Meyer B U, Röricht S, Einsiedel Gräfin von H, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995; 118 429-440
- 12 Nass R. Mirror movement asymmetries in congenital hemiparesis: the inhibition hypothesis revisited. Neurology. 1985; 35 1059-1062
- 13 Wassermann E M, Fuhr P, Cohen L G, Hallett M. Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology. 1991; 41 1795-1799
- 14 Ferbert A, Priori A, Rothwell J C, Day B L, Colebatch J G, Marsden C D. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992; 453 525-546
- 15 Ugawa Y, Hanajima R, Kanazawa I. Interhemispheric facilitation of the hand area of the human motor cortex. Neurosci Lett. 1993; 160 153-155
- 16 Netz J, Ziemann U, Hömberg V. Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res. 1995; 104 527-533
- 17 Hanajima R, Ugawa Y, Machii K. et al . Interhemispheric facilitation of the hand motor area in humans. J Physiol. 2001; 531 849-859
- 18 Röricht S, Meyer B-U, Woichiechowsky C, Lehmann R. Callosal and corticospinal tract function in patients with hydrocephalus: a morphometric and transcranial magnetic stimulation study. J Neurol. 1998; 245 280-288
- 19 Schmierer K, Niehaus L, Röricht S, Meyer B U. Conduction deficits of callosal fibres in early multiple sclerosis. J Neurol Neurosurg Psychiatry. 2000; 68 633-638
- 20 Boroojerdi B, Hungs M, Mull M. et al . Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1998; 109 230-237
- 21 Hoppner J, Kunesch E, Buchmann J, Hess A, Grossmann A, Benecke R. Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally mediated inhibition in multiple sclerosis. Clin Neurophysiol. 1999; 110 748-756
- 22 Jung P, Beyerle A, Humpich M, Neumann-Haefelin T, Lanfermann H, Ziemann U. Ipsilateral silent period: a marker of callosal conduction abnormality in early relapsing-remitting multiple sclerosis?. J Neurol Sci. 2006; 250 133-139
- 23 Meyer B U, Röricht S, Schmierer K, Irlbacher K, Meierkord H, Niehaus L, Grosse P. First diagnostic applications of transcallosal inhibition in diseases affecting callosal neurones (multiple sclerosis, hydrocephalus, Huntington's disease). Electroencephalogr Clin Neurophysiol Suppl. 1999; 51 233-242
- 24 Brown P, Ridding M C, Werhahn K J. et al . Abnormalities of the balance between inhibition and excitation in the motor cortex of patients with cortical myoclonus. Brain. 1996; 119 309-317
- 25 Boroojerdi B, Diefenbach K, Ferbert A. Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci. 1996; 144 160-170
- 26 Cracco R Q, Amassian V E, Maccabee P J, Cracco J B. Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol. 1989; 74 417-424
- 27 Asanuma H, Okuda O. Effects of transcallosal volleys on pyramidal tract cell activity of cat. J Neurophysiol. 1962; 25 198-208
- 28 Li J Y, Espay A J, Gunraj C A, Pal P K, Cunic D I, Lang A E, Chen R. Interhemispheric and ipsilateral connections in parkinson's disease: relation to mirror movements. Movement Disord. 2007; 22 813-821
- 29 Wolters A, Classen J, Kunesch E, Grossmann A, Benecke R. Measurement of transcallosally mediated cortical inhibition for differentiating parkinsonian syndromes. Mov Disord. 2004; 19 518-528
- 30 Trompetto C, Buccolieri A, Marchese R, Marinelli L, Michelozzi G, Abbruzzese G. Impairment of transcallosal inhibition in patients with corticobasal degeneration. Clin Neurophysiol. 2003; 114 2181-2187
- 31 Kühn A A, Grosse P, Holtz K, Brown P, Meyer B U, Kupsch A. Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clin Neurophysiol. 2004; 115 1786-1795
- 32 Van Zandijke M, Casselman J. Involvement of corpus callosum in amyotrophic lateral sclerosis shown by MRI. Neuroradiology. 1995; 37 287-288
- 33 Yamauchi H, Fukuyama H, Ouchi Y, Nagahama Y, Kimura J, Asato R, Konishi J. Corpus callosum atrophy in amyotrophic lateral sclerosis. J Neurol Sci. 1995; 134 189-196
- 34 Krampfl K, Mohammadi B, Komissarow L, Dengler R, Bufler J. Mirror movements and ipsilateral motor evoked potentials in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004; 5 154-163
- 35 Wittstock M, Wolters A, Benecke R. Transcallosal inhibition in amyotrophic lateral sclerosis. Clin Neurophysiol. 2007; 118 301-307
- 36 Karandreas N, Papadopoulou M, Kokotis P, Papapostolou A, Tsivgoulis G, Zambelis T. Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007; 8 112-118
Dr. med. Matthias Wittstock
Klinik und Poliklinik für Neurologie, Universität Rostock
Gehlsheimer Straße 20
18147 Rostock
Email: matthias.wittstock@med.uni-rostock.de