Literatur
-
1
Elstrom R L, Bauer D E, Buzzai M, Karnauskas R, Harris M H, Plas D R, Zhuang H, Cinalli R M, Alavi A, Rudin C M, Thompson C B.
Akt stimulates aerobic glycolysis in cancer cells.
Cancer Res.
2004;
64
3892-3899
-
2
Buzzai M, Bauer D E, Jones R G, DeBerardinis R J, Hatzivassiliou G, Elstrom R L, Thompson C B.
The glucose dependency of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation.
Oncogene.
2005;
24
4165-4173
-
3
Ramanathan A, Wang C, Schreiber S L.
Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements.
Proc Natl Acad Sci USA.
2005;
102
5992-5997
-
4
Pelicano H, Martini D S, Xu R H, Huang P.
Glycolysis inhibition for anticancer treatment.
Oncogene.
2006;
25
4633-4646
-
5
Geschwind J F, Georgiades C S, Ko Y H, Pedersen P L.
Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma.
Expert Rev Anticancer Ther.
2004;
4
449-457
-
6
Maher J C, Krishan A, Lampidis T.
Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic condition.
Cancer Chemother Pharmacol.
2004;
53
116-122
-
7
Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh G F, De Young L R, Lampidis T J.
2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo.
Cancer Res.
2004;
64
31-34
-
8
Xu R H, Pelicano H, Zhou Y, Carew J S, Feng L, Bhalla K N, Keating M J, Huang P.
Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.
Cancer Res.
2005;
65
613-621
-
9
Gatenby R A, Gillies R J.
Why do cancers have high aerobic glycolysis?.
Nat Rev Cancer.
2004;
4
891-899
-
10
Langbein S, Zerilli M, zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo M P, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy J F.
Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted.
Br J Cancer.
2006;
94
578-585
-
11
Nebeling L C, Miraldi F, Shurin S B, Lerner E.
Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports.
J Am Coll Nutr.
1995;
14
202-208
-
12 AWMF .Anwendung der ketogenen Diät im Kindesalter, Leitlinien der Gesellschaft für Neuropädiatrie, AWMF Online.
-
13
Mellanen P, Minn H, Grenman R, Harkonen P.
Expression of glucose transporters in head-and-neck tumors.
Int J Cancer.
1994;
56
622-629
-
14
Noguchi Y, Marat D, Saito A, Yoshikawa T, Doi C, Fukuzawa K, Tsuburaya A, Satoh S, Ito T.
Expression of facilitative glucose transporters in gastric tumors.
Hepatogastroenterology.
1999;
46
2683-2689
-
15
Rudlowski C, Becker A J, Schröder W, Rath W, Büttner R, Moser M.
GLUT1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer.
Am J Clin Pathol.
2003;
120
691-698
-
16
Macheda M L, Rogers S, Best J D.
Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.
J Cell Physiol.
2005;
202
654-662
-
17
Palit V, Phillips R M, Puri R, Shah T, Bibby M C.
Expression of HIF-1alpha and Glut-1 in human bladder cancer.
Oncol Rep.
2005;
14
909-913
Dr. med. Jann Arends
Klinik für Tumorbiologie an der Albert-Ludwigs-Universität Freiburg
Breisacher Str. 117
79106 Freiburg
Phone: 0761/206-1890/-1801
Fax: 0761/206-1892
Email: arends@tumorbio.uni-freiburg.de