Synlett 2007(16): 2607-2608  
DOI: 10.1055/s-2007-986658
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Sodium Hypochlorite (NaOCl)

Hojat Veisi*
Faculty of Chemistry, Bu-Ali Sina University, Hamadan 6517838683, Iran
e-Mail: h_organo2005@yahoo.com;
Further Information

Publication History

Publication Date:
12 September 2007 (online)

Introduction

Sodium hypochlorite (NaOCl), commonly known as bleach, is a strong oxidizing and bleaching agent. This reagent is one of the most important oxidants in organic synthesis and is a source of oxygen for olefin epoxidation. [1] NaOCl has found wide application in organic synthesis, such as chlorination of benzene derivatives, [2] epoxidation of olefines without metal catalysts, [3] enantioselective epoxidation of alkenes with catalyst, [4] selective oxidation of benzylic hydrocarbons, [5] oxidation of alcohols, [6] synthesis of 3-oxazolins, [7] dihydroxylation of olefins, [8] oxidation of aliphatic ethers to esters under ruthenium catalysis, [9] etc. NaOCl has also been found useful for H2S-odor control via oxidation of H2S (Scheme 1).

Scheme 1

Commercially, NaOCl is available in solutions of various concentrations, with 12.5% (w/w) being the most common for bulk usage. This product contains 0.15 kg of available chlorine per liter. [10] It is a liquid (ρ = 1.206 g/ml at 25 °C) which boils at 111 °C

Sodium hypochlorite is a solution made from the reaction of chlorine with a sodium hydroxide solution (Scheme 2).

Scheme 2

NaOCl is corrosive and oxidising, it has a variety of uses, and is an excellent disinfectant/antimicrobial agent. The advantages of using NaOCl include operational simplicity, availability, selectivity, and low cost, and it is a green medium for organic reactions.

    References

  • 1 Meunier B. Guilmet E. De-Carvalho ME. Poliblance R. J. Am. Chem. Soc.  1984,  106:  6668 
  • 2 Hopkins CY. Chisholm MJ. Can. J. Res., Sect. B  1946,  24:  208 
  • 3 Klawonn M. Bhor S. Mehltretter G. Döbler C. Fischer C. Beller M. Adv. Synth. Catal.  2003,  345:  392 
  • 4 Kureshy RI. Khan NH. Abdi SHR. Patel ST. Lyer P. Suresh E. Dastidar P. J. Mol. Catal. A: Chem.  2000,  160:  227 
  • 5 Lee NH. Lee C.-S. Jung D.-S. Tetrahedron Lett.  1998,  39:  1388 
  • 6 Mirafzal GA. Lozera AM. Tetrahedron Lett.  1998,  39:  7266 
  • 7 Favreau S. Cuvelier LL. Loiseau M. Dunach E. Fellous R. Tetrahedron Lett.  2000,  41:  9790 
  • 8 Mehltretter GM. Bhor S. Klawonn M. Döbler C. Sundermeier U. Eckert M. Milit H.-C. Beller M. Synthesis  2003,  295 
  • 9 Gonsalvi L. Arends IWCE. Sheldon RA. Chem. Commun.  2002,  202 
  • 10 Chen L. Huang J. Yang CL. Environ. Prog.  2004,  20:  18 
  • 11 Gonsalvi L. Arends IWCE. Sheldon RA. Org. Lett.  2002,  4:  1659 
  • 12 Chellamani A. Harikengaram S. J. Mol. Catal. A: Chem.  2006,  247:  260