Int J Sports Med 2008; 29(8): 624-629
DOI: 10.1055/s-2007-989262
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Oxygen Consumption in Nonexercising Muscle after Exercise

T. Nagasawa1
  • 1Integrated Arts and Science, Okinawa National College of Technology, Okinawa, Japan
Weitere Informationen

Publikationsverlauf

accepted after revision September 3, 2007

Publikationsdatum:
14. November 2007 (online)

Abstract

Little is known about the effect of exercise intensity on post-exercise oxygen consumption in nonexercising muscle. This study examined the effect of exercise intensity on muscle oxygen consumption (V˙O2mus) in nonexercising forearm flexor muscles (nonexV˙O2mus) after cycling exercise. Eight healthy male subjects performed 20 min of cycling exercise at 30 %, 50 %, and 70 % of maximal oxygen consumption (%V˙O2max) on separate days. The nonexV˙O2mus values at rest, at the end of exercise, and during recovery after exercise were measured by near-infrared spectroscopy. V˙O2mus was determined using the rate of decrease in oxygenated hemoglobin during arterial occlusion. The nonexV˙O2mus at the end of exercise significantly increased by 1.3 ± 0.1, 2.0 ± 0.3, and 2.2 ± 0.3-fold over resting values at 30 %, 50 %, and 70 % V˙O2max, respectively. NonexV˙O2mus returned to the resting value after 3 – 5 min of recovery and then showed no significant change for 120 min after exercise at all exercise intensities. NonexV˙O2mus at the end of exercise at 70 % V˙O2max was significantly higher than that after exercise at 30 % V˙O2max. These results show that 20 min of cycling exercise induced an increase in nonexV˙O2mus and that higher intensity exercise produces a larger increase in nonexV˙O2mus after exercise.

References

  • 1 Ahlborg G, Hagenfeldt L, Wahren J. Influence of lactate infusion on glucose and FFA metabolism in man.  Scand J Clin Lab Invest. 1976;  36 193-201
  • 2 Ahlborg G, Hagenfeldt L, Wahren J. Substrate utilization by the inactive leg during one-leg or arm exercise.  J Appl Physiol. 1978;  39 718-723
  • 3 Bahr R. Excess postexercise oxygen consumption – magnitude, mechanisms and practical implications.  Acta Physiol Scand. 1992;  605 (Suppl) 1-70
  • 4 Borsheim E, Bahr R, Hansson P, Gullestad L, Hallen J, Sejersted O M. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption.  Metabolism. 1994;  43 565-571
  • 5 Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption.  Sports Med. 2003;  33 1037-1060
  • 6 Borsheim E, Knardahl S, Hostmark A T, Bahr R. Adrenergic control of post-exercise metabolism.  Acta Physiol Scand. 1998;  162 313-323
  • 7 Brooks G A, Hittelman K J, Faulkner J A, Beyer R E. Temperature, skeletal muscle mitochondrial functions, and oxygen debt.  Am J Physiol. 1971;  220 1053-1059
  • 8 Chance B, Dait M T, Zhang C, Hamaoka T, Hagerman F. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers.  Am J Physiol. 1992;  262 C766-C775
  • 9 Gaesser G A, Brooks G A. Metabolic bases of excess post-exercise oxygen consumption: a review.  Med Sci Sports Exerc. 1984;  16 29-43
  • 10 Golbo H. Hormonal and Metabolic Adaptation to Exercise. New York; Thieme-Statton 1983: 2-58
  • 11 Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise.  J Appl Physiol. 1999;  87 348-355
  • 12 Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy.  J Appl Physiol. 1996;  81 1410-1417
  • 13 Hiroyuki H, Hamaoka T, Sako T, Nishio S, Kime R, Murakami M, Katsumura T. Oxygenation in vastus lateralis and lateral head of gastrocnemius during treadmill walking and running in humans.  Eur J Appl Physiol. 2002;  87 343-349
  • 14 Lindinger M I, Heigenhauser G J, McKelvie R S, Jones N L. Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise.  Am J Physiol. 1990;  258 R1486-R1494
  • 15 Murakami M, Katsumura T, Hamaoka T, Osada T, Sako T, Higuchi H, Esaki K, Kime R, Shimomitsu T. Effects of epinephrine and lactate on the increase in oxygen consumption of nonexercising skeletal muscle after aerobic exercise.  J Biomed Opt. 2000;  5 406-410
  • 16 Poortmans J R, Delescaille-Vanden Bossche J, Leclercq R. Lactate uptake by inactive forearm during progressive leg exercise.  J Appl Physiol. 1978;  45 835-839
  • 17 Richter E A, Kiens B, Saltin B, Christensen N J, Savard G. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass.  Am J Physiol. 1988;  254 E555-E561
  • 18 Sako T, Hamaoka T, Higuchi H, Kurosawa Y, Katsumura T. Validity of NIR spectroscopy for quantitatively measuring muscle oxidative metabolic rate in exercise.  J Appl Physiol. 2001;  90 338-344
  • 19 Simonsen L, Bulow J, Madsen J, Christensen N J. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue.  Am J Physiol. 1992;  263 E850-E855
  • 20 Sumida K D, Donovan C M. Lactate removal is not enhanced in nonstimulated perfused skeletal muscle after endurance training.  J Appl Physiol. 2001;  90 1307-1313
  • 21 Van Beekvelt M C, Colier W N, Wevers R A, van Engelen B G. Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle.  J Appl Physiol. 2001;  90 511-519

Dr. Ph.D. Takeshi Nagasawa

Okinawa National College of Technology
Integrated Arts and Science

905 Henoko

Nago Okinawa 905-2192

Japan

Telefon: + 81 9 80 55 42 46

Fax: + 81 9 80 55 40 12

eMail: nagasawa@okinawa-ct.ac.jp