Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2007(20): 3179-3184
DOI: 10.1055/s-2007-990782
DOI: 10.1055/s-2007-990782
PAPER
© Georg Thieme Verlag Stuttgart · New York
Laboratory-Scale Synthesis of Nitriles by Catalysed Dehydration of Amides and Oximes under Flash Vacuum Pyrolysis (FVP) Conditions
Further Information
Received
29 June 2007
Publication Date:
21 September 2007 (online)
Publication History
Publication Date:
21 September 2007 (online)
Abstract
Dehydration of amides and oximes can be catalysed by 3 Å molecular sieves or by tungsten trioxide under flash vacuum pyrolysis (FVP) conditions. This provides a convenient synthesis of aliphatic, aromatic, and heterocyclic nitriles, generally in excellent yields under mild, neutral, and short contact time conditions.
Key words
gas-phase reaction - amides - oximes - nitriles - heterogeneous catalysis
- 1
March J. Advanced Organic Chemistry 3rd ed.: Wiley-Interscience; New York: 1985. p.1169 - 2 For example:
Li D.Shi F.Guo S.Deng Y. Tetrahedron Lett. 2005, 46: 671 - Reviews:
-
3a
Hurd CD. The Pyrolysis of Carbon Compounds Chemical Catalog Company; New York: 1929. p.582 -
3b
Hurd CD. The Pyrolysis of Carbon Compounds Chemical Catalog Company; New York: 1929. p.659 - 4 For example:
Lancaster M. Green Chemistry Royal Society of Chemistry; Cambridge: 2002. -
5a
Billups WE.McCord DJ. Angew. Chem., Int. Ed. Engl. 1994, 33: 1332 -
5b
Denis J.-M.Gaumont A.-C. In Gas Phase Reactions in Organic SynthesisVallée Y. Gordon and Breach; Amsterdam: 1997. - 6
Hodgetts I.Noyce SJ.Storr RC. Tetrahedron Lett. 1984, 25: 5435 - 7
Bader H.Hopf H.Jäger H. Chem. Ber. 1989, 122: 1193 -
8a
Laporterie A.Dubac J.Mazerolles P.Iloughmane H. J. Organomet. Chem. 1981, 216: 321 -
8b
Laporterie A.Manuel G.Dubac J.Mazerolles P.Iloughmane H. J. Organomet. Chem. 1981, 210: C33 - 9
Van der Waals ACLM.Klunder AJH.van Buren FR.Zwanenburg B. J. Mol. Catal. A: Chem. 1998, 134: 179 - 10
Sen SE.Smith SM.Sullivan KA. Tetrahedron 1999, 55: 12657 - 11
Barton DG.Soled SL.Iglesia E. Top. Catal. 1998, 6: 87 - 12
McDougald G. PhD Thesis The University of Edinburgh; UK: 2000. - 13
Duffy EF.Foot JS.McNab H.Milligan AA. Org. Biomol. Chem. 2004, 2: 2677 - 14
Dunlop AP.Peters FN. The Furans American Chemical Society; New York: 1953. p.544 - 15
Krause JG.Shaikh S. Synthesis 1975, 502 - 16
Pakrashi SC. J. Org. Chem. 1971, 36: 642 - 17
Kazmirowski HG.Landmann H.Walsmann P. Pharmazie 1969, 24: 378 - 18
Xiang Y.-B.Drenkard S.Baumann K.Hickey D.Eschenmoser A. Helv. Chim. Acta 1994, 77: 2209 - 19
Yamamori Y.Hiramatsu Y.Adachi I. J. Heterocycl. Chem. 1981, 18: 347 - 20
Wentrup C.Crow WD. Tetrahedron 1970, 26: 4375 - 21
Yamakawa M.Kubota T.Akazawa H. Bull. Chem. Soc. Jpn. 1967, 40: 1600 - 22
Salley DJ.Gray JB. J. Am. Chem. Soc. 1948, 70: 2650 - 23
Mai K.Path G. Synthesis 1986, 1037 - 24
Murahashi S.-I.Naota T.Nakajima N. J. Org. Chem. 1986, 51: 898 - 25
Pouchert J.Behnke J. The Aldrich Library of 13 C and 1 H FTNMR Spectra 1st ed.: Aldrich Chemical Company; Milwaukee, Wisconsin: 1993. - 26
Bergbreiter DE.Blanton JR. J. Org. Chem. 1985, 50: 5828 - 27
Ogata Y.Izawa Y.Tomioka H. Tetrahedron 1967, 23: 1509 - 28
Anderson HJ. Can. J. Chem. 1959, 37: 2053 - 29
Tamura Y.Adachi M.Kawasaki T.Yasuda H.Kita Y. J. Chem. Soc., Perkin Trans. 1 1980, 1132 - 30
Elpern B.Nachod FC. J. Am. Chem. Soc. 1950, 72: 3379