Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2007(18): 2863-2867
DOI: 10.1055/s-2007-990832
DOI: 10.1055/s-2007-990832
LETTER
© Georg Thieme Verlag Stuttgart · New York
Design for Morphine Alkaloids by Intramolecular Heck Strategy: Chemoenzymatic Synthesis of 10-Hydroxy-14-epi-dihydrocodeinone via C-D-B Ring Construction
Further Information
Received
17 July 2007
Publication Date:
15 October 2007 (online)
Publication History
Publication Date:
15 October 2007 (online)
Abstract
Enzymatic dihydroxylation of β-bromoethylbenzene provided a homochiral diene diol that served as starting material for the synthesis of the complete morphinan skeleton via an intramolecular Heck cyclization.
Key words
enzymatic dihydroxylation - Heck reaction - Mitsunobu reaction - Friedel-Crafts reaction - morphinans
- For reviews of morphine syntheses, see:
-
1a
Zezula J.Hudlicky T. Synlett 2005, 388 -
1b
Taber DF.Neubert TD.Schlecht MF. In Strategies and Tactics in Organic Synthesis Vol. 5:Harmata M. Academic Press; Oxford: 2004. p.353-389 -
1c
Blakemore PR.White JD. Chem. Commun. 2002, 1159 -
1d
Novak BH.Hudlicky T.Reed JW.Mulzer J.Trauner D. Curr. Org. Chem. 2000, 4: 343 -
1e
Hudlicky T.Butora G.Fearnley SP.Gum AG.Stabile MR. A Historical Perspective of Morphine Syntheses, In Studies in Natural Product Chemistry Vol. 18: Atta-ur-Rahman, Ed.; Elsevier; Amsterdam: 1996. p.43-154 -
1f
Organic Synthesis Highlights II
Waldmann H. VCH; Weinheim: 1995. p.407 -
1g
Maier M. Organic Synthesis Highlights IIWaldmann H. VCH; Weinheim: 1995. p.357-369 -
2a
Taber DF.Neubert TD.Rheingold AL. J. Am. Chem. Soc. 2002, 124: 12416 -
2b
Taber DF.Neubert TD.Schlecht MF. In Strategies and Tactics in Organic Synthesis Vol. 5:Harmata M. Academic Press; Oxford: 2004. p.353-389 -
3a
Parker KA.Fokas D. J. Am. Chem. Soc. 1992, 114: 9688 -
3b
Parker KA.Fokas D. J. Org. Chem. 1994, 59: 3927 -
3c
Parker KA.Fokas D. J. Org. Chem. 1994, 59: 3933 -
3d
Parker KA.Fokas D. J. Org. Chem. 2006, 71: 449 -
4a
Butora G.Hudlicky T.Fearnley SP.Gum AG.Stabile MR.Abboud KA. Tetrahedron Lett. 1996, 37: 8155 -
4b
Butora G.Hudlicky T.Fearnley SP.Stabile MR.Gum AG.Gonzalez D. Synthesis 1998, 665 -
5a
Hong CY.Kado N.Overman LE. J. Am. Chem. Soc. 1993, 115: 11028 -
5b
Heerding DA.Hong CY.Kado N.Look GC.Overman LE. J. Org. Chem. 1993, 58: 6947 -
6a
Trost BM.Tang W. J. Am. Chem. Soc. 2002, 124: 14542 -
6b
Trost BM.Toste FD. J. Am. Chem. Soc. 2000, 122: 11262 -
6c
Trost BM.Tang W. Angew. Chem. Int. Ed. 2002, 41: 2795 -
6d
Trost BM.Tang W.Toste FD. J. Am. Chem. Soc. 2005, 127: 14785 - 7
Liou J.-P.Cheng C.-Y. Tetrahedron Lett. 2000, 41: 915 - 8
Hsin L.-W.Chang L.-T.Chen C.-W.Hsu C.-H.Chen H.-W. Tetrahedron 2005, 61: 513 -
9a
Frey DA.Duan C.Hudlicky T. Org. Lett. 1999, 1: 2085 -
9b
Frey DA.Duan C.Ghiviriga I.Hudlicky T. Coll. Czech. Chem. Commun. 2000, 65: 561 - 10
Botari P.Endoma MA.Hudlicky T.Ghiviriga I.Abboud KA. Coll. Czech. Chem. Commun. 1999, 64: 203 - 11
Stabile MR.Hudlicky T.Meisels ML. Tetrahedron: Asymmetry 1995, 6: 537 - 12 For synthesis of octahydroisoquinolines by electrochemical cyclizations, see:
Endoma MA.Butora G.Claeboe CD.Hudlicky T. Tetrahedron Lett. 1997, 38: 8833 - 13 For the conversion of 5 into 15, see:
Zezula J. PhD Thesis University of Florida; USA: 2003. - 14
Ghosh S.Kinney WA.Gauthier DA.Lawson EC.Hudlicky T.Maryanoff BE. Can. J. Chem. 2006, 84: 555 - 15
Okuda S.Yamaguchi S.Tsuda K. Chem. Pharm. Bull. 1965, 13: 1092 -
16a
Evans DA.Mitch CH. Tetrahedron Lett. 1982, 23: 285 -
16b
Evans DA.Mitch CH.Thomas RC.Zimmerman DM.Robey RL. J. Am. Chem. Soc. 1980, 102: 5955 - 17
Schultz AG.Lucci RD.Napier JJ.Kinoshita H.Ravichandran R.Shannon P.Yee YK. J. Org. Chem. 1985, 50: 217 - 18
Nagata H.Miyazawa N.Ogasawara K. Chem. Commun. 2001, 1094 -
20a
Rapoport H.Stevenson GH. J. Am. Chem. Soc. 1954, 76: 1796 -
20b
Rapoport H.Nauman R.Bissell ER.Bonner RM. J. Org. Chem. 1950, 15: 1103 -
20c Stereochemistry of C-10 hydroxyl:
Rapoport H.Masamune S. J. Am. Chem. Soc. 1955, 77: 4330 - 21
Barber RB.Rapoport H. J. Med. Chem. 1976, 19: 1175 - 22
Wunderly SW.Brochmann-Hanssen E. J. Org. Chem. 1977, 42: 4277 - 23
Takeda M.Inoue H.Kugita H. Tetrahedron 1969, 25: 1839 -
24a
Kugita H.Takeda M.Inoue H. Tetrahedron 1969, 25: 1851 -
24b
Kugita H.Takeda M.Inoue H. J. Med. Chem. 1970, 13: 973
References and Notes
For the description of model studies see ref. 1a.
25It is likely that the hydrogenation of neopine-type compounds only proceeds to the natural configuration at C-14 in systems containing the full phenanthrene core, which is not the case with 14 or 15. The scarcity of material precluded us from performing the C-10-C-11 closure prior to hydrogenation.