Subscribe to RSS
DOI: 10.1055/s-2007-990874
Ruthenium-Catalyzed Transformations of Cyclopropylethynes [1]
Publication History
Publication Date:
31 October 2007 (online)

Abstract
The addition of various carboxylic acids to (trans-2-ethoxycyclopropyl)ethyne (1) by catalysis with [Ru(O2CH)(CO)2(PPh3)]2 proceeds regioselectively in the Markovnikov sense with ring opening of the cyclopropyl group to furnish allenylacetaldehyde acyl ethyl acetals 3 in high yields (44-96%, 11 examples). The allenylacetaldehyde derivatives undergo palladium-catalyzed Heck-type cross coupling with iodobenzene and subsequent trapping of the π-allylpalladium intermediate with primary and secondary amines to yield labile [β-(1-aminomethyl)styryl]acetaldehyde acyl ethyl acetals 12 (24-83%, 4 examples). Anti-Markovnikov addition of carboxylic acids to the triple bond in (trans-2-ethoxycyclopropyl)ethyne (1) without ring opening can be brought about under [Ru(CH2CMeCH2)2(dppb)] catalysis to give 2-(trans-2-ethoxycyclopropyl)ethenyl esters 13 (69-92%, 3 examples). (1-Hydroxycyclopropyl)ethyne (14), under catalysis by [Ru(O2CH)(CO)2(PPh3)]2, reacts with carboxylic acids to yield 1-acetylcyclopropyl esters 15 (49-74%, 4 examples) by Markovnikov-sense addition and intramolecular transesterification. Anti-Markovnikov- and Markovnikov-sense addition of carboxylic acids to unsubstituted cyclopropylethyne can both be achieved regioselectively under catalysis with [Ru(CH2CMeCH2)2(dppb)] and [Ru(O2CH)(CO)2(PPh3)]2 to furnish 2-cyclopropylethenyl esters 23 (68-98%, 6 examples) and 1-cyclopropylethenyl esters 24 (66-97%, 5 examples), respectively.
Key words
acetylenes - cyclopropanes - allenes - ruthenium catalysis - palladium catalysis
- 1xFor AdM, this is to count as Part 145 in the series ‘Cyclopropyl Building Blocks for Organic Synthesis’.
- 1x For Part 144, see:
Nakamura I.Nagata R.Nemoto T.Terada M.Yamamoto Y.Späth T.de Meijere A. Eur. J. Org. Chem. 2007, 4479 - 1x For Part 143, see:
Yucel B.Valentić N.Noltemeyer M.de Meijere A. Eur. J. Org. Chem. 2007, 4081 - 1
Acetylene Chemistry
Diederich F.Stang PJ.Tikwinski RR. Wiley-VCH; Weinheim: 2004. -
2a
Naota T.Takaya H.Murahashi SI. Chem. Rev. 1998, 98: 2599 -
2b
Ruthenium Catalysts and Fine Chemistry, In Topics in Organometallic Chemistry, Vol. 11
Bruneau C.Dixneuf P. H. Springer; Heidelberg: 2004. -
3a
Bruneau C.Dixneuf PH. Acc. Chem. Res. 1999, 32: 311 -
3b
Bruneau C.Dixneuf PH. Angew. Chem. Int. Ed. 2006, 45: 2176 -
3c
Bruneau C. Top. Organomet. Chem. 2004, 11: 125-153 -
4a
Suzuki N.Kondo T.Mitsudo T. Organometallics 1998, 17: 766 -
4b
Morimoto T.Chatani N.Fukumoto Y.Murai S. J. Org. Chem. 1997, 62: 3762 -
4c
Nishida M.Adachi N.Onozuka K.Matsumura H.Mori M. J. Org. Chem. 1998, 63: 9158 -
4d
Trost BM.Toste FD. J. Am. Chem. Soc. 1999, 121: 9728 -
4e
Dérien S.Dixneuf PH. J. Organomet. Chem. 2004, 689: 1382 - 5
Rotem M.Shvo Y. Organometallics 1983, 2: 1689 -
6a
Mori M.Sakakibara N.Kinoshita A. J. Org. Chem. 1998, 63: 6082 -
6b
Zuercher WJ.Scholl M.Grubbs RH. J. Org. Chem. 1998, 63: 4291 -
6c
Picquet M.Bruneau C.Dixneuf PH. Chem. Commun. 1998, 2249 -
6d
Semeril D.Bruneau C.Dixneuf PH. Adv. Synth. Catal. 2002, 344: 585 - 7
Chatani N.Morimoto T.Muto T.Murai S. J. Am. Chem. Soc. 1994, 116: 6049 -
8a
Liese T.de Meijere A. Angew. Chem., Int. Ed. Engl. 1982, 21: 65 ; Angew. Chem. 1982, 94, 65, Angew. Chem. Suppl. 1982, 34 -
8b
Liese T.de Meijere A. Chem. Ber. 1986, 119: 2995 -
8c
Keyaniyan S.Apel M.Richmond JP.de Meijere A. Angew. Chem., Int. Ed. Engl. 1985, 24: 770 ; Angew. Chem. 1985, 97, 763 -
8d
Bengtson G.Keyaniyan S.de Meijere A. Chem. Ber. 1986, 119: 3607 -
8e
de Meijere A.Schulz T.-J.Kostikov RR.Graupner F.Murr T.Bielfeldt T. Synthesis 1991, 547 -
8f
Militzer HC.Schömenauer S.Otte C.Puls C.Hain J.Bräse S.de Meijere A. Synthesis 1993, 998 -
8g
Bräse S.Schömenauer S.McGaffin G.Stolle A.de Meijere A. Chem. Eur. J. 1996, 2: 545 -
8h
Flynn BL.de Meijere A. J. Org. Chem. 1999, 64: 400 - 9
Salaün JRY. Top. Curr. Chem. 1988, 144: 1-71 - 10
Iwasawa N.Narasaka K. Top. Curr. Chem. 2000, 207: 69-88 ; and references cited therein -
11a
Bruneau C.Neveux M.Kabouche Z.Dixneuf PH. Synlett 1991, 755 -
11b
Bruneau C.Dixneuf PH. Chem. Commun. 1997, 507 -
11c
Doucet H.Derrien N.Kabouche Z.Bruneau C.Dixneuf PH. J. Organomet. Chem. 1997, 551: 151 -
11d
Neveux M.Seiller B.Hagedorn F.Bruneau C.Dixneuf PH. J. Organomet. Chem. 1993, 451: 133 -
11e
Seiller B.Heins D.Bruneau C.Dixneuf PH. Tetrahedron 1995, 51: 10901 -
11f
Doucet H.Höfer J.Bruneau C.Dixneuf PH. J. Chem. Soc., Chem. Commun. 1993, 850 -
11g
Doucet H.Martin-Vaca B.Bruneau C.Dixneuf PH. J. Org. Chem. 1995, 60: 7247 -
11h
Doucet H.Höfer J.Derrien N.Bruneau C.Dixneuf PH. Bull. Soc. Chim. Fr. 1996, 133: 939 -
11i
Picquet M.Bruneau C.Dixneuf PH. Chem. Commun. 1997, 1201 -
11j
Le Paih J.Dérien S.Dixneuf PH. Chem. Commun. 1999, 1437 -
11k
Le Paih J.Monnier F.Dérien S.Dixneuf PH.Clot E.Eisenstein O. J. Am. Chem. Soc. 2003, 125: 11964 - 13
Emme I.Bruneau C.de Meijere A.Dixneuf PH. Synlett 2000, 1315 - 14 Possibly, the cyano group participates in the ruthenium-catalyzed reaction, see ref. 3a and original publications cited therein
-
15a
Dalla V.Pale P. Tetrahedron Lett. 1994, 35: 3525 -
15b
Pale P.Cuche J. Tetrahedron Lett. 1987, 28: 6447 -
15c
Jong TT.Williard PG.Porwell JP. J. Org. Chem. 1984, 49: 735 -
15d
Yamamoto M. J. Chem. Soc., Perkin Trans. 1 1981, 582 -
15e
Jellal A.Grimaldi J.Santelli M. Tetrahedron Lett. 1984, 25: 3179 -
15f
Yamamoto M. J. Chem. Soc., Chem. Commun. 1978, 649 -
15g
Kraft GA.Katzenellenbogen JA. J. Am. Chem. Soc. 1981, 103: 5459 -
15h
Spencer RW.Tam TF.Thomas E.Robinson VJ.Krantz A. J. Am. Chem. Soc. 1986, 108: 5589 -
15i
Castner J.Pascual J. J. Chem. Soc. 1958, 3962 -
15j
Pale P.Chuche J. Tetrahedron Lett. 1987, 28: 6447 -
16a
Zimmer R.Dinesh CU.Nandanan E.Khan FA. Chem. Rev. 2000, 100: 3067 -
16b
Smadja W. Chem. Rev. 1983, 83: 263 -
16c
Alkynes, Di- and Polyynes, Allenes, Cumulenes, In Houben-Weyl
4th ed., Vol. 5/2a:
Müller E. Thieme; Stuttgart: 1977. -
17a
Shimizu I.Tsuji J. Chem. Lett. 1984, 233 -
17b
Grigg R.Brown S.Sridharan V.Uttley MD. Tetrahedron Lett. 1998, 39: 3247 -
17c
Bando T.Harayama H.Fukazawa Y.Shiro M.Fugami K.Tanaka S.Tamura Y. J. Org. Chem. 1994, 59: 1465 -
17d
Ma S.Negishi E.-I. J. Am. Chem. Soc. 1995, 117: 6345 -
17e
Ahmar M.Cazes B.Gore J. Tetrahedron Lett. 1984, 25: 4505 -
17f
Grigg R.Sridharan V.Terrier C. Tetrahedron Lett. 1996, 37: 4221 -
17g
Grigg R.Savic V. Tetrahedron Lett. 1996, 37: 6565 -
17h
Larock RC.Zenner JM. J. Org. Chem. 1995, 60: 482 -
17i
Besson L.Bazin J.Gore J.Cazes B. Tetrahedron Lett. 1994, 35: 2881 -
17j
Cazes B. Pure Appl. Chem. 1990, 62: 1867 -
17k
Larock RC.Berrios-Pena NG.Fried CA. J. Am. Chem. Soc. 1991, 56: 2615 -
18a
Doucet H.Bruneau C.Dixneuf PH. Synlett 1997, 7: 807 -
18b
Syper L. Tetrahedron 1987, 43: 2853 - 19
Salaün J.Marguerite J. Org. Synth. Coll. Vol. VII John Wiley & Sons; London: 1990. p.131 - 20
Militzer H.-C. Dissertation Universität Hamburg; Germany: 1990. - 21
Bruneau C.Kabouche Z.Neveux M.Seiller B.Dixneuf PH. Inorg. Chim. Acta 1994, 222: 155 - 22
Lechevallier A.Huet F.Conia JC. Tetrahedron 1983, 39: 3329 -
23a
Salaün J.Almirantis Y. Tetrahedron 1983, 39: 2441 -
23b
Barnier J.-P.Karkour B.Salaün J. J. Chem. Soc., Chem. Commun. 1985, 1270 - Cyclopropylethyne is commercially available and can easily be prepared in two to three steps:
-
24a
Corley EG.Thomson AS.Huntington M. Org. Synth. Coll. Vol. X John Wiley & Sons; London: 2004. p.456 -
24b
See ref. 9f.
- 26
Ruppin C.Dixneuf PH. Tetrahedron Lett. 1986, 27: 6323 - 27 1-Ethynylcyclopropanol (14) had previously been prepared from cyclopropanone ethyl hemiacetal, yet only in 21% yield; see:
Wasserman HH.Cochoy RE.Baird MS. J. Am. Chem. Soc. 1969, 91: 2375 -
28a
Salaün J. J. Org. Chem. 1976, 41: 1237 -
28b
Salaün J.Bennani F.Compain JC.Fadel A. J. Org. Chem. 1980, 45: 4129
References
The ring closure in this sequence9f is best performed with LiHMDS, not with LDA.9g Subsequent complete isomerization of the cis- to the trans-isomer in the initially obtained mixture is then achieved by treatment with LDA for 5 min.
25It is noteworthy that the amount of catalyst is critical in this reaction. When less than 1 mol% of C was used, an increasing amount of the 1-substituted vinyl ester was observed. The prolonged reaction time allowed the catalyst to alter (be oxidized?) and obviously the altered species still catalyzes the addition but with diminished selectivity.