RSS-Feed abonnieren
DOI: 10.1055/s-2007-990914
MacMillan’s Imidazolidinones: Powerful Chiral Organocatalysts
Publikationsverlauf
Publikationsdatum:
11. Dezember 2007 (online)
Introduction
During the last seven years, many research groups have developed the concept of iminium activation. The advantage of this approach is that the iminium generated in situ by equilibrium between an α,β-unsaturated carbonyl compound (ketone or aldehyde) and a secondary amine salt can replace the traditional use of Lewis acid to lower the LUMO of the electrophile (Figure [1] ). [1]
Figure 1 Lewis acid activation vs iminium activation
A small collection of chiral imidazolidinone salts have been shown to be widely efficient for a broad range of asymmetric transformations such as Friedel-Crafts alkylation, [2] Diels-Alder cycloaddition, [3] hydrogenation of α,β-unsaturated carbonyl compounds [4] and cascade catalysis. [5]
Furthermore, these chiral imidazolidinones can be used for the classical enamine activation of ketone or aldehyde [6] in aldol or addition reactions. [5]
This concept first reported by MacMillan [3] is now an efficient tool in organocatalysis. [7] Indeed, this reagent is a good alternative to toxic, hazardous and expensive metals.
Numerous catalysts are commercially available (Figure [2] ), or can be easily prepared from inexpensive natural amino acids. [3]
Moreover, it has been recently reported that the commercially available chiral amine salts derived from these imidazolidinones can be used for iminium activation in total synthesis, demonstrating that this concept can be applied to the preparation of complex target molecules. [8]
Figure 2 Commercially available chiral imidazolidinone catalysts
- 1
Kagan HB.Riant O. Chem. Rev. 1992, 92: 1007 - 2
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 4370 - 3
Ahrendt KA.Borths CJ.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 4243 - 4
Yang J W.Hechavarria FonsecaMT.Vignola N.List B. Angew. Chem. Int. Ed. 2005, 44: 108 - 5
Huang Y.Walji AM.Larsen CH.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051 -
6a
List B. Chem. Commun. 2006, 819 -
6b
List B. Acc. Chem. Res. 2004, 37: 548 -
6c
Marigo M.Jørgensen KA. Chem. Commun. 2006, 2001 -
7a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
7b
Berkessel A.Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis Wiley-VCH; Weinheim: 2005. -
8a
Kinsman AC.Kerr MA. J. Am. Chem. Soc. 2003, 125: 14120 -
8b
Robichaud J.Tremblay F. Org. Lett. 2006, 8: 597 -
8c
King HD.Meng Z.Denhart D.Mattson R.Kimura R.Wu D.Qi G.Macor JE. Org. Lett. 2005, 7: 3437 - 9
Wilson RM.Jen WS.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 11616 - 10
Fredrickson F. Tetrahedron 1997, 53: 403 - 11
Jen WS.Wiener JJM.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 9874 - 12
Hechavarria Fonseca M. T.List B. Angew. Chem. Int. Ed. 2004, 43: 3958 -
13a
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 -
13b
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 7894 -
13c
Brown SP.Goodwin NC.MacMillan DWC. J. Am. Chem. Soc. 2003, 125: 1192 -
14a
Pederson RL.Fellows IM.Ung TA.Ishihara H.Hajela SP. Adv. Synth. Catal. 2002, 344: 728 -
14b
Kim SG.Kim J.Jung H. Tetrahedron Lett. 2005, 46: 2437 -
15a
Beeson T.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 8826 -
15b
Brochu MP.Brown SP.MacMillan DWC. J. Am. Chem. Soc. 2004, 126: 4108