References and Notes
1
Tokunaga T.
Hume WE.
Nagamine J.
Kawamura T.
Taiji M.
Nagata R.
Bioorg. Med. Chem. Lett.
2005,
15:
1789
2a
Smith CD.
Zilfou JT.
Stratmann K.
Patterson GML.
Moore RE.
Mol. Pharmacol.
1995,
47:
241
2b
Zhang X.
Smith CD.
Mol. Pharmacol.
1996,
49:
288
3
Zaveri NT.
Jiang F.
Olsen CM.
Deschamps JR.
Parrish D.
Polgar W.
Toll L.
J. Med. Chem.
2004,
47:
2973
4
Alcaraz M.
Atkinson S.
Cornwall P.
Foster AC.
Gill DM.
Humphries LA.
Keegan PS.
Kemp R.
Merifield E.
Nixon RA.
Noble AJ.
O’Beirne D.
Patel ZM.
Perkins J.
Rowa P.
Sadler P.
Singleton JT.
Tornos J.
Watts AJ.
Woodland IA.
Org. Process Res. Dev.
2005,
9:
555
5
Kikuchi C.
Hiranuma T.
Koyama M.
Bioorg. Med. Chem. Lett.
2002,
12:
2549
6
Gallagher G.
Lavanchi PG.
Wilson JW.
Hieble JP.
DeMarinis RM.
J. Med. Chem.
1985,
28:
1533
For early surveys of oxindole alkaloids, see:
7a
Cordell GA.
An Introduction to Alkaloids: A Biogenetic Approach
Wiley-Interscience;
New York:
1981.
7b
Bindra JS.
Oxindole Alkaloids, In The Alkaloids - Chemistry and Physiology
Vol. 14:
Manske RHF.
Academic Press;
New York:
1973.
p.83
8
Abourriche A.
Abboud Y.
Maoufoud S.
Mohou H.
Seffaj T.
Charrouf M.
Chaib N.
Benamara A.
Bontemps N.
Francisco C.
Farmaco
2003,
58:
1351
9a Isolation: Cui CB.
Kakeya H.
Okada G.
Onose R.
Osada H.
J. Antibiot.
1996,
49:
527
9b Structure: Cui C.
Kakeya H.
Osada H.
Tetrahedron
1996,
52:
12651
Total syntheses:
9c
Edmonson S.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1998,
37:
1138
9d
Wang H.
Ganesan A.
J. Org. Chem.
2000,
65:
4685
9e
Sebahar PR.
Williams RM.
J. Am. Chem. Soc.
2000,
122:
5666
9f
Von Nussbaum F.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2000,
39:
2175
9g Cytotoxic activity: Edmondson SE.
Danishefsky SJ.
Sepp-Lorenzino L.
Rosen N.
J. Am. Chem. Soc.
1999,
121:
2147
For reviews of the chemistry of the welwitindolinones, see:
10a
Avendaño C.
Menéndez JC.
Curr. Org. Synth.
2004,
1:
65
10b
Menéndez JC.
In Bioactive Heterocycles V, In Topics in Heterocyclic Chemistry
Vol. 11:
Springer;
Berlin/Heidelberg:
2007.
p.63
11a
Szabo-Pusztay K.
Szabo L.
Synthesis
1979,
276
11b
Underwood R.
Prasad K.
Repic O.
Hardtmann G.
Synth. Commun.
1992,
22:
343
11c
Cushing TD.
Sanz-Cervera JF.
Williams RM.
J. Am. Chem. Soc.
1993,
115:
9323
12 For a review of the synthesis of 2-oxindoles, see: Karp GM.
Org. Prep. Proced. Int.
1993,
25:
481
13
Bailey PD.
Cochrane PJ.
Irvine F.
Morgan KM.
Pearson DPJ.
Veal KT.
Tetrahedron Lett.
1999,
40:
4593
14 Some of these compounds are known in the literature. See: Harrington PE.
Kerr MA.
Synlett
1996,
1047
15
Wuest FR.
Kniess T.
J. Labelled Compd. Radiopharm.
2005,
48:
31
16
Representative Experimental Procedure
To a solution of oxalyl chloride (5 equiv) in anhyd CH2Cl2 (10 mL), at -78 °C under an argon atmophere, was added DMSO (7 equiv). The solution was stirred for ca. 10 min, until effervescence ceased. A solution of alcohol 6b (350 mg, 0.77 mmol) in anhyd CH2Cl2 (3 mL) was added dropwise via cannula, and the red solution was stirred for 10 min at -78 °C. Then, Et3N (10 equiv) was added and the solution was left to warm to r.t. for 20 min, while stirred. The reaction mixture was diluted with CH2Cl2 (20 mL) and washed with sat. aq NH4Cl (3 × 20 mL). The organic layer was dried (Na2SO4) and evaporated, and the residue was purified by rapid chromatography on silica gel, eluting with PE-EtOAc mixtures (gradient from 20:1 to 5:1), to yield compound 8b (357 mg, 90%). Slower chromatographic separation may lead to considerable amounts of decomposition products, specially from hydrolysis of the terminal chloromethylene moiety.
17
Data for Representative Compounds 8
Compound 8b: IR (film on NaCl): 1731.6 (C=O), 1112.9 (C-O) cm-1. 1H NMR (250 MHz, CDCl3): δ = 7.73-7.67 (m, 4 H, H-2′′,6′′), 7.50-7.35 (m, 8 H, H-5,6,3′′,4′′,5′′), 6.77 (d, 1 H, J = 7.6 Hz, H-7), 5.07 (d, 1 H, J = 14.2 Hz, CH2O), 4.90 (d, 1 H, J = 14.2 Hz, CH2O), 3.31-3.13 (m, 2 H, H-3′), 3.21 (s, 3 H, NCH3), 2.40-2.17 (m, 2 H, H-1′), 1.43-1.28 (m, 2 H, H-2′), 1.12 [s, 9 H, C(CH3)3]. 13C NMR (62.9 MHz, CDCl3): δ = 173.2 (C-2), 142.4 (C-7a), 139.1 (C-4), 135.5 (C-2′′,6′′), 133.0 (C-1′′), 130.5 (C-6), 129.9 (C-4′′), 127.8 (C-3′′,5′′), 123.2 (C-3a), 121.6 (C-5), 107.4 (C-7), 64.4 (C-3), 60.9 (CH2O), 43.6 (C-3′), 35.6 (C-1′), 27.7 (C-2′), 26.85 (NCH3), 26.75 [C(CH3)3], 19.3 [C(CH3)3]. Anal. Calcd for C29H33Cl2NO2Si: C, 66.15; H, 6.32; N, 2.66. Found: C, 65.97; H, 6.02; N, 2.36.
Compound 8d (major diastereomer, 8da; minor diastereomer, 8db): IR (film on NaCl): 1729.0 (C=O) cm-1. 1H NMR (250 MHz, CDCl3): δ = 7.35-7.25 (m, 2 H, H-4,6), 7.07 (t, 1 H, J = 7.6 Hz, H-5), 6.80 (d, 1 H, J = 7.8 Hz, H-7), 3.75-3.60 (m, 1 H, H-3′), 3.18 (m, 3 H, NCH3), 2.70-2.10 (m, 2 H, H-1′), 1.80-1.35 (m, 4 H, H-2′, CH2CH3), 0.95-0.80 (m, 3 H, CH2CH3). 13C NMR (62.9 MHz, CDCl3): δ = 174.1 (CO), 143.0 (C-7a, 8da), 142.9 (C-7a, 8db), 130.7 (C-4), 129.7 (C-3a, 8da), 129.5 (C-3a, 8db), 124.6 (C-6), 124.0 (C-5, 8db), 123.9 (C-5, 8da), 109.1 (C-7), 65.1 (C-3′, 8db), 64.9 (C-3′, 8da), 64.7 (C-3), 36.8 (C-1′, 8db), 36.3 (C-1′, 8da), 33.1 (C-2′, 8db), 32.7 (C-2′, 8da), 31.8 (CH2, 8da), 31.5 (CH2, 8db), 27.1 (NCH3), 11.3 (CH2CH3). Anal. Calcd for C14H17Cl2NO: C, 58.75; H, 5.99; N, 4.89. Found: C, 58.80; H, 5.91; N, 4.99.
Compound 8g (major diastereomer, 8ga; minor diastereomer, 8gb): IR (film on NaCl): 3296.0 (NH), 1718.7 (C=O) cm-1. 1H NMR (250 MHz, CDCl3): δ = 8.96 (s, 1 H, NH, 8ga), 8.90 (s, 1 H, NH, 8gb), 6.96 (d, 1 H, J = 2.4 Hz, H-4), 6.88 (d, 1 H, J = 8.5 Hz, H-6), 6.82 (dd, 1 H, J = 8.5, 2.4 Hz, H-7), 4.05-3.85 (m, 1 H, H-3′), 3.81 (s, 3 H, OCH3), 2.60-2.40 (m, 2 H, H-1′), 2.40-2.20 (m, 2 H, H-2′), 1.48 (d, 3 H, J = 6.5 Hz, CH3, 8ga), 1.46 (d, 3 H, J = 6.3 Hz, CH3, 8gb). 13C NMR (62.9 MHz, CDCl3): δ = 177.1 (CO), 156.3 (C-5), 141.1 (C-7a), 134.1 (C-3a, 8gb), 133.8 (C-3a, 8ga), 115.7 (C-7, 8gb), 115.5 (C-7, 8ga), 111.8 (C-4, 8ga), 111.5 (C-4, 8gb), 111.3 (C-6), 68.0 (C-3), 58.2 (C-3′, 8gb), 58.0 (C-3′, 8ga), 56.2 (OCH3), 36.9 (C-1′, 8gb), 36.5 (C-1′, 8ga), 35.1 (C-2′, 8gb), 34.8 (C-2′, 8ga), 25.7 (CH3, 8gb), 25.5 (CH3, 8ga). Anal. Calcd for C13H15Cl2NO2: C, 54.18; H, 5.25; N, 4.86. Found: C, 53.95; H, 5.12; N, 4.75.
Compound 8a has been previously obtained in 7% yield by treatment of alcohol 6a with NCS in CH2Cl2 followed by addition of aq NH4Cl. See:
18a
Hino T.
Miura H.
Nakagawa T.
Murata R.
Nakagawa M.
Heterocycles
1975,
3:
805
18b
Hino T.
Miura H.
Murata R.
Nakagawa M.
Chem. Pharm. Bull.
1978,
26:
3695
19
Data for 3-Chloro-1-methyl-3-(3-oxobutyl)oxindole
IR (film on NaCl): 1728.2, 1717.0 (C=O) cm-1. 1H NMR (250 MHz, CDCl3): δ = 7.39 (d, 1 H, J = 7.6 Hz, H-4), 7.37 (t, 1 H, J = 7.6 Hz, H-6), 7.15 (t, 1 H, J = 7.6 Hz, H-5), 6.87 (d, 1 H, J = 7.6 Hz, H-7), 3.25 (s, 3 H, NCH3), 2.65-2.40 (m, 4 H, H-1′,2′), 2.11 (s, 3 H, COCH3). 13C NMR (62.9 MHz, CDCl3): δ = 206.9 (C-3′), 173.9 (C-2), 142.7 (C-7a), 130.8 (C-4), 129.8 (C-3a), 124.5 (C-6), 123.9 (C-5), 109.2 (C-7), 64.4 (C-3), 38.4 (C-2′), 33.2 (C-1′), 30.4 (COCH3), 27.0 (NCH3). MS: m/z = 251 [M+]. Anal. Calcd for C13H14ClNO2: C, 62.03; H, 5.61; N, 5.56. Found: C, 62.35; H, 5.81; N, 5.62.
A related spirocyclization was observed after exposure of two N-acyltryptophan derivatives to DMSO-Ms2O at-20 °C for 5 h, which gave the corresponding five-membered spirolactones in yields of around 65% as mixtures of diastereomers. See:
20a
Büchi G.
DeShong PR.
Katsumura S.
Sagimura Y.
J. Am. Chem. Soc.
1979,
101:
5084
For a similar reaction using a mixture of DMSO and tert-butyl bromide, see:
20b
Palla G.
Marchelli R.
Casnati G.
Dossena A.
Gazz. Chim. Ital.
1982,
112:
535
20c
Labroo RB.
Labroo VM.
King MM.
Cohen LA.
J. Org. Chem.
1991,
56:
3637
21 Indeed, compounds 8 were not obtained when oxalyl chloride was replaced by TFAA.
22
Nozoye T.
Shibanuma Y.
Nakai T.
Hatori H.
Chem. Pharm. Bull.
1988,
36:
4980
23
McComas CC.
Perales JB.
Van Vranken DL.
Org. Lett.
2002,
3:
2337