References and Notes
1a
Li W.
Leet JE.
Ax HA.
Gustavson DR.
Brown DM.
Turner L.
Brown K.
Clark J.
Yang H.
Fung-Tomc J.
Lam KS.
J. Antibiot.
2003,
56:
226
1b
Leet JE.
Li W.
Ax HA.
Matson JA.
Huang S.
Huang R.
Cantone JL.
Drexler D.
Dalterio RA.
Lam KS.
J. Antibiot.
2003,
56:
232
1c
Naidu BN.
Sorenson ME.
Matiskella JD.
Li W.
Sausker JB.
Zhang Y.
Connoly TP.
Lam KS.
Bronson JJ.
Pucci MJ.
Yang H.
Ueda Y.
Bioorg. Med. Chem. Lett.
2006,
16:
3545
2a
Qian-Cutrone J.
Huang S.
Shu Y.-Z.
Vyas D.
Fairchild C.
Menendez A.
Krampitz K.
Dalterio R.
Klohr SE.
Gao Q.
J. Am. Chem. Soc.
2002,
124:
14556
2b
Baran PS.
Hafensteiner BD.
Ambhaikar NB.
Guerrero CA.
Gallagher JD.
J. Am. Chem. Soc.
2006,
128:
8678
3
Somei M.
Yamada F.
Nat. Prod. Rep.
2004,
21:
278
For reviews on N-hydroxyindoles, see:
4a
Somei M.
Adv. Heterocycl. Chem.
2002,
82:
101
4b
Somei M.
Heterocycles
1999,
50:
1157
5a
Munshi KL.
Kohl H.
de Souza NJ.
J. Heterocycl. Chem.
1977,
14:
1145
5b
Showalter HDH.
Bridges AJ.
Zhou H.
Sercel AD.
McMichael A.
Fry DW.
J. Med. Chem.
1999,
42:
5464
5c
Erba E.
Gelmi ML.
Pocar D.
Tetrahedron
2000,
56:
9991
6a
Nicolaou KC.
Estrada AA.
Hyup Lee S.
Freestone GC.
Angew. Chem. Int. Ed.
2006,
45:
5364
6b
Wu Z.
Ede NJ.
Org. Lett.
2003,
5:
2935
6c
Stephensen H.
Zaragoza F.
Tetrahedron Lett.
1999,
40:
5799
6d
Katayama S.
Ae N.
Nagata R.
J. Org. Chem.
2001,
66:
3474
7
Akao A.
Nonoyama N.
Mase T.
Yasuda N.
Org. Process Res. Dev.
2006,
10:
1178
8
Jiang Y.
Zhao J.
Hu L.
Tetrahedron Lett.
2002,
43:
4589
9
Wong A.
Kuethe JT.
Davies IW.
J. Org. Chem.
2003,
68:
9865 ; and references cited therein
10
Wrobel Z.
Makosza M.
Tetrahedron
1997,
53:
5501
11
Foucaud A.
Razorilalana-Rabearivony C.
Loukakou E.
Person H.
J. Org. Chem.
1983,
48:
3639
12
Penoni A.
Palmisano G.
Broggini G.
Kadowaki A.
Nicholas KM.
J. Org. Chem.
2006,
71:
823
13a
Belley M.
Sauer E.
Beaudoin D.
Duspara P.
Trimble LA.
Dubé P.
Tetrahedron Lett.
2006,
47:
159
13b
Belley M.
Beaudoin D.
Duspara P.
Sauer E.
St-Pierre G.
Trimble LA.
Synlett
2007, in press
14 Most of the substrates used for the reductive cyclization were prepared by aromatic electrophilic substitution, either with NaH in DMF15 (1a-c, 4 and 9c) or NaOH/TBAHS/toluene18 (9a,b). Compounds 11a-c, 14 and 17 were commercially available and 20 was prepared via a Pd-catalyzed arylation of a ketone enolate.9
15a
Grob CA.
Weissbach O.
Helv. Chim. Acta
1961,
44:
1748
15b
Bourdais J.
Germain C.
Tetrahedron Lett.
1970,
11:
195
16
Monde K.
Takasugi M.
Shirata A.
Phytochemistry
1995,
39:
581
17
Typical Experimental Procedures:
2-
tert
-Butyl-1-hydroxy-6-(trifluoromethyl)-1
H
-indole-3-carbonitrile (10b): To a solution of 4,4-dimethyl-2-[2-nitro-4-(trifluoromethyl)phenyl]-3-oxopentanenitrile (9b; 236 mg, 0.75 mmol) in a mixture of EtOAc and AcOH (4:1, 12 mL) were added 10% Pd/C (40 mg, 0.05 equiv) and (Ph3P)4Pd (13 mg, 0.015 equiv). This mixture was degassed and stirred under an atmosphere of hydrogen for 4 h. The solids were removed by a filtration through Celite and the solvents were evaporated. Flash chromatography of the residue on silica gel using a gradient of EtOAc-hexane (0-25%) as eluent afforded 10b (204 mg, 96% yield) as a light beige powder; mp 144 °C (dec.). 1H NMR (400 MHz, acetone-d
6): δ = 11.07 (s, 1 H), 7.84 (s, 1 H), 7.81 (d, J = 8.3 Hz, 1 H), 7.58 (dd, J = 1.3, 8.3 Hz, 1 H), 1.69 (s, 9 H). 13C NMR (100 MHz, acetone-d
6): δ = 153.78, 133.02, 126.60, 125.14 (q, J
C-F = 32 Hz), 124.91 (q, J
C-F = 269 Hz), 119.19, 118.34 (q, J
C-F = 4 Hz), 115.47, 106.68 (q, J
C-F = 4 Hz), 78.60, 34.48, 28.51. IR (KBr): 3127, 2977, 2229 (CN), 1365, 1324, 1272, 1119 cm-1. MS (ESI, +ve): m/z = 283.0 [M + 1]. Anal. Calcd for C14H13F3N2O: C, 59.57; H, 4.64; N, 9.92. Found: C, 59.47; H, 4.68; N, 9.55.
Ethyl 1,2-Dimethoxy-6-(trifluoromethyl)-1
H
-indole-3-carboxylate (6): The reductive cyclization of ethyl 3-amino-2-[2-nitro-4-(trifluoromethyl)phenyl]-3-oxopropanoate (4; 270 mg, 0.75 mmol) was performed as described above. The crude material obtained after filtration was redissolved into THF and treated with an ethereal solution of CH2N2 at r.t. for 45 min. The excess CH2N2 was quenched with AcOH, the solvents were evaporated and the residue was purified by flash chromatography on silica gel using a gradient of EtOAc-hexane (0-10%) as eluent to give dimethoxyindole 6 (191 mg, 80%) as a light beige powder; mp 76 °C. 1H NMR (400 MHz, acetone-d
6): δ = 8.25 (d, J = 8.4 Hz, 1 H), 7.78 (s, 1 H), 7.52 (dd, J = 1.3, 8.4 Hz, 1 H), 4.40 (q, J = 7.1 Hz, 2 H), 4.38 (s, 3 H), 4.24 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, acetone-d
6): δ = 162.69, 155.17, 126.75, 125.10 (q, J
C-F = 269 Hz), 123.91 (q, J
C-F = 32 Hz), 123.75, 121.65, 118.50 (q, J
C-F = 4 Hz), 105.28 (q, J
C-F = 4 Hz), 88.54, 66.29, 63.39, 59.53, 13.90. IR (KBr): 2987, 2949, 1703, 1555, 1459 cm-1. MS (ESI, +ve): m/z = 318.0 [M + 1], 289.1, 229.0. Anal. Calcd for C14H14F3NO4: C, 53.00; H, 4.45; N, 4.41. Found: C, 53.20; H, 4.13; N, 4.30.
18
Makosza M.
Tomashewskij AA.
J. Org. Chem.
1995,
60:
5425