References and Notes
1 Permanent address: Department of Chemistry, Faculty of Sciences, University of Alexandria, P.O. Box 426 Ibrahimia, 21321 Alexandria, Egypt.
For reviews, see:
2a
Brimble MA.
Furkert DP.
Curr. Org. Chem.
2003,
7:
1
2b
Brimble MA.
Farès FA.
Tetrahedron
1999,
55:
7661
For selected recent references, see:
2c
Georgiu T.
Tofi M.
Montagnon T.
Vassilikogiannakis G.
Org. Lett.
2006,
8:
1945
2d
Zhou X.-T.
Carter RG.
Angew. Chem. Int. Ed.
2006,
45:
1787
2e
Fürstner A.
Fenster MDB.
Fasching B.
Godbout C.
Radkowski K.
Angew. Chem. Int. Ed.
2006,
45:
5510
2f
Liu J.
Yang JH.
Ko C.
Hsung RP.
Tetrahedron Lett.
2006,
47:
6121
2g
Meilert K.
Brimble MA.
Org. Biomol. Chem.
2006,
4:
2184
2h
Paterson I.
Anderson EA.
Dalby SM.
Lim JH.
Maltas P.
Moessner C.
Chem. Commun.
2006,
4186
2i
Halim R.
Brimble MA.
Merten J.
Org. Lett.
2005,
7:
2659
2j
Sofikiti N.
Montagnon T.
Vassilikogiannakis G.
Stratakis M.
Org. Lett.
2005,
7:
2357
2k
Paterson I.
Anderson EA.
Dalby SM.
Loiseleur O.
Org. Lett.
2005,
7:
4121
3 For a review, see: Manley-Harris M.
Richards GN.
Adv. Carbohydr. Chem. Biochem.
1997,
52:
207
4a
Defaye J.
García Fernández JM.
Carbohydr. Res.
1994,
256:
C1
4b
Defaye J.
García Fernández JM.
Zuckerindustrie
1995,
120:
700
4c
Manley-Harris M.
Richards GN.
Carbohydr. Res.
1996,
287:
183
4d
Ratsimba V.
García Fernández JM.
Defaye J.
Nigay H.
Voilley A.
J. Chromatogr., A
1999,
844:
283
4e
Christian TJ.
Manley-Harris M.
Field RJ.
Parker BA.
J. Agric. Food Chem.
2000,
48:
1823
4f
Montilla A.
Ruiz-Matute AI.
Martínez-Castro I.
del Castillo MD.
Food Res. Int.
2006,
39:
801
4g
Böhm A.
Klessen B.
Henle T.
Eur. Food Res. Technol.
2006,
222:
737
5a
Enderlin G.
Taillefumier C.
Didierjean C.
Chapleur Y.
Tetrahedron: Asymmetry
2005,
16:
2459
5b
vant Hooft PAV.
Oualid FE.
Overkleeft HS.
van der Marel GA.
van Boom JH.
Leeuwenburgh MA.
Org. Biomol. Chem.
2004,
2:
1395
5c
Tatibouët A.
Lawrence S.
Rollin P.
Holman GD.
Synlett
2004,
1945
5d
Jang K.-H.
Ryu E.-J.
Park B.-S.
Song K.-B.
Kang SA.
Kim CH.
Uhm T.-B.
Park Y.-I.
Rhee S.-K.
J. Agric. Food Chem.
2003,
51:
2632
5e
Li X.
Takahashi H.
Ohtake H.
Shiro M.
Ikegami S.
Tetrahedron
2001,
57:
8053
5f
García Fernández JM.
Ortiz Mellet C.
Defaye J.
J. Org. Chem.
1998,
63:
3572
5g
Bextermöller R.
Redlich H.
Schnieders K.
Thormählen S.
Fröhlich R.
Angew. Chem. Int. Ed.
1998,
37:
2496
5h
García Fernández JM.
Schnelle R.-R.
Defaye J.
Aust. J. Chem.
1996,
49:
319
5i
García Fernández JM.
Schnelle R.-R.
Defaye J.
Tetrahedron: Asymmetry
1995,
6:
307
6a
Defaye J.
Gadelle A.
Pedersen C.
Carbohydr. Res.
1985,
136:
53
6b
Defaye J.
García Fernández JM.
Carbohydr. Res.
1994,
251:
1
6c
Defaye J.
García Fernández JM.
Carbohydr. Res.
1994,
251:
17
7
Defaye J.
García Fernández JM.
Carbohydr. Res.
1992,
237:
223
8a
Benito JM.
Gómez-García M.
Ortiz Mellet C.
García Fernández JM.
Defaye J.
Org. Lett.
2001,
3:
549
8b
Benito JM.
Rubio EM.
Gómez-G arcía M.
Ortiz Mellet C.
García Fernández JM.
Tetrahedron
2004,
60:
5899
8c
Balbuena P.
Rubio EM.
Ortiz Mellet C.
García Fernández JM.
Chem. Commun.
2006,
2610
9a
Rubio EM.
García-Moreno MI.
Balbuena P.
Lahoz FJ.
Alvarez E.
Ortiz Mellet C.
García Fernández JM.
J. Org. Chem.
2006,
71:
2257
9b
Rubio EM.
Ortiz Mellet C.
García Fernández JM.
Org. Lett.
2003,
5:
873
10a
Müller M.
Huchel U.
Geyer A.
Schmidt R.-R.
J. Org. Chem.
1999,
64:
6190
10b
Jung K.-H.
Müller M.
Schmidt R.-R.
Chem. Rev.
2000,
100:
4423
10c
Müller M.
Schmidt R.-R.
Eur. J. Org. Chem.
2001,
2055
The term ‘contra-thermodynamic’ designates diastereomers that are energetically strongly disfavored and, consequently, cannot be accessed under reversible kinetics or thermodynamic conditions. For examples of stereoselective syntheses of contra-thermodynamic spiroacetals, see:
11a
Takaoka LR.
Buckmelter AJ.
LaCruz TE.
Rychnovsky SD.
J. Am. Chem. Soc.
2005,
127:
528
11b
LaCruz TE.
Rychnovsky SD.
Org. Lett.
2005,
7:
1873
12a
Brady RF.
Adv. Carbohydr. Chem. Biochem.
1971,
26:
197
12b
Lichtenthaler FW.
Carbohydr. Res.
1998,
313:
69
13
4,5-Di-
O
-benzyl-3-
O
-(3-bromomethylbenzyl)-1,2-
O
-isopropylidene-β-d-fructopyranose (13)
To a solution of 1,3-bis(bromomethyl)benzene (1.99 g, 7.56 mmol, 2 equiv) in anhyd DMF (50 mL), NaH (60% in mineral oil, 378 mg, 9.45 mmol) was added and the suspension was stirred at r.t. for 15 min. Compound 10
12 (1.0 g, 3.78 mmol) was then added and the reaction mixture was further stirred for 24 h. Afterwards, Et2O (15 mL) and H2O (15 mL) were added, the organic layer was separated, washed with H2O (5 × 10 mL), dried (MgSO4), filtered, and concentrated. The resulting residue was purified by column chromatography (EtOAc-PE, 1:10) to yield 11 (955 mg, 57%). Compound 11 (400 mg, 0.9 mmol) was dissolved in 60% aq AcOH (2.4 mL) and stirred at 45 °C for 2 h. The reaction mixture was then diluted with H2O (5 mL) and extracted with EtOAc (4 × 4 mL). The combined organic phase was washed with sat. aq NaHCO3 (6 mL), dried (MgSO4), filtered, and concentrated. The resulting residue was purified by column chromatography (EtOAc-PE, 2:1) to give 12 (254 mg, 70%). Conventional benzylation of 12 (323 mg, 0.80 mmol) with NaH/BnBr afforded 13 (303 mg, 65%).
14
General Procedure for the Preparation of (
O
-6→
O
-3′)-Xylylene-Tethered Fructofuranose-Fructopyranose Derivatives (15 and 18)
To a solution of 2,3-di-O-benzyl-1,2-O-isopropylidene-β-d-fructofuranose 14
9a (188 mg, 0.47 mmol) in dry DMF (3 mL), NaH (60% in mineral oil, 46 mg, 0.98 mmol) was added and the reaction mixture was stirred at r.t. for 1 h. A solution of 13 or 17
13 (225 mg, 0.39 mmol) in anhyd DMF (4 mL) was then added, the reaction mixture was further stirred at r. t. for 3 h, quenched by addition of H2O (2 mL), concentrated and the resulting residue was purified by column chromatography using EtOAc-toluene (1:6) as eluent to give 15 (190 mg, 54%) or 18 (220 mg, 62%).
15
General Procedure for Xylylene-Mediated Synthesis of Type II DFA Derivatives (16, 19, and 20)
To a solution of the corresponding m- or o-xylylene-tethered precursor 15 or 18 (280 mg, 0.31 mmol) in CH2Cl2 (20 mL) at -78 °C under Ar, TfOH (41 µL) was added. The reaction mixture was allowed to reach r.t. and stirred for 1 h, then quenched by addition of Et3N (0.1 mL) and concentrated. Column chromatography of the resulting residue (1:3 → 1:1 EtOAc-PE for 15; 1:5 → 1:2 EtOAc-PE for 18) afforded 16 (142 mg, 59%) or 19 (48.7 mg, 20.8%) and 20 (72.8 mg, 31.2%), respectively, as the only intramolecular reaction products.
16 Selected data for 16: [α]D
22 +10.1 (c 0.9, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.16 (d, 1 H, J
1a
′,1b
′ = 11.6 Hz, H-1′a), 4.14 (m, 1 H, H-5), 4.00 (d, 1 H, J
3,4 = 2.5 Hz, H-3), 3.99 (m, 1 H, H-6a), 3.96 (d, 1 H, J
1a,1b = 11.8 Hz, H-1a), 3.94 (dd, 1 H, J
3
′,4
′ = 9.5 Hz, J
4
′,5
′ = 3.2 Hz, H-4′), 3.83 (d, 2 H, J
6a
′,6b
′ = 12.0 Hz, H-6′a, H-1b), 3.74 (m, 1 H, H-6b), 3.72 (m, 1 H, H-5′), 3.61 (d, 1 H, H-3′), 3.60 (d, 1 H, H-6′b), 3.54 (dd, 1 H, J
4,5 = 7.5 Hz, H-4), 3.39 (d, 1 H, H-1′b). 13C NMR (125.7 MHz, CDCl3): δ = 102.3 (C-2), 95.9 (C-2′), 89.0 (C-3), 85.1 (C-4), 80.1 (C-5), 78.9 (C-3′), 78.6 (C-4′), 73.5 (C-5′), 75.8 (CH2Ph), 74.8 (C-6), 74.3, 72.5, 72.3, 71.2 (CH2Ph), 62.5 (C-1′), 62.0 (C-1), 60.3 (C-6′). MS-FAB: m/z (%) = 809 (60) [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.07; H, 6.07.
17
General Procedure for the Synthesis of Fully Unprotected DFAs (4 and 5)
Catalytic hydrogenation of 16 and 19 or 20 (0.038 mmol) with 10% Pd/C in EtOAc-MeOH (1:1) containing 10% HCOOH (1 mL) at 1 atm overnight, afforded the fully unprotected bis-spiro fructodisaccharide 4 or 5 in quantitative yield having physicochemical properties identical to those reported.2,4d
18
Rubio EM.
García-Moreno MI.
Balbuena P.
Ortiz Mellet C.
García Fernández JM.
Org. Lett.
2005,
7:
729
19 Selected data for 19: [α]D
22 +4.9 (c 0.8, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.06 (d, 1 H, J
6a,6b = 12.6 Hz, H-6a), 4.01 (br d, 1 H, J
4,5 = 8.7 Hz, H-5), 3.98 (dd, 1 H, J
3
′,4
′ = 9.7 Hz, J
4
′,5
′ = 3.1 Hz, H-4′), 3.88 (d, 1 H, J
3,4 = 3.7 Hz, H-3), 3.86 (d, 1 H, J
1a,1b = 13.7 Hz, H-1a), 3.84 (m, 1 H, H-6b), 3.72 (dd, H, J
6a
′,6b
′ = 11.5 Hz, J
5
′,6a
′ = 3.0 Hz, H-6′a), 3.71 (m, 1 H, H-5′), 3.70 (d, 1 H, H-1b), 3.65 (d, 1 H, H-6′b), 3.61 (dd, 1 H, H-4), 3.55 (d, 1 H, H-3′), 3.39 (d, 1 H, J
1a
′,1b
′ = 12.0 Hz, H-1′a), 3.05 (d, 1 H, H-1′b). 13C NMR (125.7 MHz, CDCl3): δ = 102.0 (C-2), 95.2 (C-2′), 88.8 (C-3), 86.2 (C-4), 79.6 (C-5), 78.9 (C-4′), 74.5 (C-3′), 73.4 (C-5′), 72.9, 72.5, 72.4, 72.0, 71.4 (CH2Ph), 71.2 (C-6), 68.5 (CH2Ph), 62.6 (C-1′), 62.4 (C-1), 60.6 (C-6′). ESI-MS: m/z = 809 [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.13; H, 6.48.
20 Selected data for 20: [α]D
22 +18.1 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.59 (d, 1 H, J
1a,1b = 12.5 Hz, H-1a), 4.24 (dt, 1 H, J
5,6b = 10.5 Hz, J
5,6a = J
4,5 = 4.5 Hz, H-5), 4.19 (d, 1 H, J
1a
′,1b
′ = 11.4 Hz, H-1′a), 4.15 (d, 1 H, J
3
′,4
′ = 7.9 Hz, H-3′), 4.13 (dd, 1 H, J
3,4 = 6.3 Hz, H-4), 4.05 (dd, 1 H, J
6a
′,6b
′ = 12.2 Hz, J
5
′,6a
′ = 5.8 Hz, H-6′a), 3.87 (d, 1 H, H-3), 3.74 (dt, 1 H, J
4
′,5
′ = J
5
′,6b
′ = 3.0 Hz, H-5′), 3.70 (d, 1 H, H-1b), 3.65 (dd, 1 H, J
6a,6b = 10.5 Hz, H-6a), 3.60 (t, 1 H, H-6b), 3.52 (d, 1 H, H-1′b), 3.45 (dd, 1 H, H-6′b), 3.41 (dd, 1 H, H-4′). 13C NMR (125.7 MHz, CDCl3): δ = 101.4 (C-2), 97.7 (C-2′), 85.1 (C-4), 84.7 (C-3), 79.0 (C-5), 78.0 (C-3′), 76.3 (C-4′), 72.9, 72.7, 72.0 (CH2Ph), 71.9 (C-6), 71.6 (C-5′), 71.2, 70.9, 70.2 (CH2Ph), 63.8 (C-1′), 61.0 (C-6′), 59.8 (C-1). ESI-MS: m/z = 809 [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.13; H, 6.06.