Subscribe to RSS
DOI: 10.1055/s-2007-991055
Spacer-Mediated Synthesis of Bis-spiroketal Disaccharides: Nonsymmetrical Furanose-Pyranose Difructose Dianhydrides
Publication History
Publication Date:
25 September 2007 (online)
Abstract
The stereochemical outcome of the dimerization reaction of d-fructose, leading to tricyclic bis-spiroketal systems, can be tuned by inserting a xylylene template between the reacting moieties. Spirocyclization becomes then an intramolecular process, the available conformational space depending on the nature of the tether. The methodology is here illustrated by the stereoselective synthesis of two nonsymmetrical di-d-fructose dianhydrides present in commercial caramel.
Key words
acetals - difructose dianhydrides - spiroacetals - oligosaccharides - spiro compounds
- For reviews, see:
-
2a
Brimble MA.Furkert DP. Curr. Org. Chem. 2003, 7: 1 -
2b
Brimble MA.Farès FA. Tetrahedron 1999, 55: 7661 - For selected recent references, see:
-
2c
Georgiu T.Tofi M.Montagnon T.Vassilikogiannakis G. Org. Lett. 2006, 8: 1945 -
2d
Zhou X.-T.Carter RG. Angew. Chem. Int. Ed. 2006, 45: 1787 -
2e
Fürstner A.Fenster MDB.Fasching B.Godbout C.Radkowski K. Angew. Chem. Int. Ed. 2006, 45: 5510 -
2f
Liu J.Yang JH.Ko C.Hsung RP. Tetrahedron Lett. 2006, 47: 6121 -
2g
Meilert K.Brimble MA. Org. Biomol. Chem. 2006, 4: 2184 -
2h
Paterson I.Anderson EA.Dalby SM.Lim JH.Maltas P.Moessner C. Chem. Commun. 2006, 4186 -
2i
Halim R.Brimble MA.Merten J. Org. Lett. 2005, 7: 2659 -
2j
Sofikiti N.Montagnon T.Vassilikogiannakis G.Stratakis M. Org. Lett. 2005, 7: 2357 -
2k
Paterson I.Anderson EA.Dalby SM.Loiseleur O. Org. Lett. 2005, 7: 4121 - 3 For a review, see:
Manley-Harris M.Richards GN. Adv. Carbohydr. Chem. Biochem. 1997, 52: 207 -
4a
Defaye J.García Fernández JM. Carbohydr. Res. 1994, 256: C1 -
4b
Defaye J.García Fernández JM. Zuckerindustrie 1995, 120: 700 -
4c
Manley-Harris M.Richards GN. Carbohydr. Res. 1996, 287: 183 -
4d
Ratsimba V.García Fernández JM.Defaye J.Nigay H.Voilley A. J. Chromatogr., A 1999, 844: 283 -
4e
Christian TJ.Manley-Harris M.Field RJ.Parker BA. J. Agric. Food Chem. 2000, 48: 1823 -
4f
Montilla A.Ruiz-Matute AI.Martínez-Castro I.del Castillo MD. Food Res. Int. 2006, 39: 801 -
4g
Böhm A.Klessen B.Henle T. Eur. Food Res. Technol. 2006, 222: 737 -
5a
Enderlin G.Taillefumier C.Didierjean C.Chapleur Y. Tetrahedron: Asymmetry 2005, 16: 2459 -
5b
vant Hooft PAV.Oualid FE.Overkleeft HS.van der Marel GA.van Boom JH.Leeuwenburgh MA. Org. Biomol. Chem. 2004, 2: 1395 -
5c
Tatibouët A.Lawrence S.Rollin P.Holman GD. Synlett 2004, 1945 -
5d
Jang K.-H.Ryu E.-J.Park B.-S.Song K.-B.Kang SA.Kim CH.Uhm T.-B.Park Y.-I.Rhee S.-K. J. Agric. Food Chem. 2003, 51: 2632 -
5e
Li X.Takahashi H.Ohtake H.Shiro M.Ikegami S. Tetrahedron 2001, 57: 8053 -
5f
García Fernández JM.Ortiz Mellet C.Defaye J. J. Org. Chem. 1998, 63: 3572 -
5g
Bextermöller R.Redlich H.Schnieders K.Thormählen S.Fröhlich R. Angew. Chem. Int. Ed. 1998, 37: 2496 -
5h
García Fernández JM.Schnelle R.-R.Defaye J. Aust. J. Chem. 1996, 49: 319 -
5i
García Fernández JM.Schnelle R.-R.Defaye J. Tetrahedron: Asymmetry 1995, 6: 307 -
6a
Defaye J.Gadelle A.Pedersen C. Carbohydr. Res. 1985, 136: 53 -
6b
Defaye J.García Fernández JM. Carbohydr. Res. 1994, 251: 1 -
6c
Defaye J.García Fernández JM. Carbohydr. Res. 1994, 251: 17 - 7
Defaye J.García Fernández JM. Carbohydr. Res. 1992, 237: 223 -
8a
Benito JM.Gómez-García M.Ortiz Mellet C.García Fernández JM.Defaye J. Org. Lett. 2001, 3: 549 -
8b
Benito JM.Rubio EM.Gómez-G arcía M.Ortiz Mellet C.García Fernández JM. Tetrahedron 2004, 60: 5899 -
8c
Balbuena P.Rubio EM.Ortiz Mellet C.García Fernández JM. Chem. Commun. 2006, 2610 -
9a
Rubio EM.García-Moreno MI.Balbuena P.Lahoz FJ.Alvarez E.Ortiz Mellet C.García Fernández JM. J. Org. Chem. 2006, 71: 2257 -
9b
Rubio EM.Ortiz Mellet C.García Fernández JM. Org. Lett. 2003, 5: 873 -
10a
Müller M.Huchel U.Geyer A.Schmidt R.-R. J. Org. Chem. 1999, 64: 6190 -
10b
Jung K.-H.Müller M.Schmidt R.-R. Chem. Rev. 2000, 100: 4423 -
10c
Müller M.Schmidt R.-R. Eur. J. Org. Chem. 2001, 2055 - The term ‘contra-thermodynamic’ designates diastereomers that are energetically strongly disfavored and, consequently, cannot be accessed under reversible kinetics or thermodynamic conditions. For examples of stereoselective syntheses of contra-thermodynamic spiroacetals, see:
-
11a
Takaoka LR.Buckmelter AJ.LaCruz TE.Rychnovsky SD. J. Am. Chem. Soc. 2005, 127: 528 -
11b
LaCruz TE.Rychnovsky SD. Org. Lett. 2005, 7: 1873 -
12a
Brady RF. Adv. Carbohydr. Chem. Biochem. 1971, 26: 197 -
12b
Lichtenthaler FW. Carbohydr. Res. 1998, 313: 69 - 18
Rubio EM.García-Moreno MI.Balbuena P.Ortiz Mellet C.García Fernández JM. Org. Lett. 2005, 7: 729
References and Notes
Permanent address: Department of Chemistry, Faculty of Sciences, University of Alexandria, P.O. Box 426 Ibrahimia, 21321 Alexandria, Egypt.
13
4,5-Di-
O
-benzyl-3-
O
-(3-bromomethylbenzyl)-1,2-
O
-isopropylidene-β-d-fructopyranose (13)
To a solution of 1,3-bis(bromomethyl)benzene (1.99 g, 7.56 mmol, 2 equiv) in anhyd DMF (50 mL), NaH (60% in mineral oil, 378 mg, 9.45 mmol) was added and the suspension was stirred at r.t. for 15 min. Compound 10
12 (1.0 g, 3.78 mmol) was then added and the reaction mixture was further stirred for 24 h. Afterwards, Et2O (15 mL) and H2O (15 mL) were added, the organic layer was separated, washed with H2O (5 × 10 mL), dried (MgSO4), filtered, and concentrated. The resulting residue was purified by column chromatography (EtOAc-PE, 1:10) to yield 11 (955 mg, 57%). Compound 11 (400 mg, 0.9 mmol) was dissolved in 60% aq AcOH (2.4 mL) and stirred at 45 °C for 2 h. The reaction mixture was then diluted with H2O (5 mL) and extracted with EtOAc (4 × 4 mL). The combined organic phase was washed with sat. aq NaHCO3 (6 mL), dried (MgSO4), filtered, and concentrated. The resulting residue was purified by column chromatography (EtOAc-PE, 2:1) to give 12 (254 mg, 70%). Conventional benzylation of 12 (323 mg, 0.80 mmol) with NaH/BnBr afforded 13 (303 mg, 65%).
General Procedure for the Preparation of (
O
-6→
O
-3′)-Xylylene-Tethered Fructofuranose-Fructopyranose Derivatives (15 and 18)
To a solution of 2,3-di-O-benzyl-1,2-O-isopropylidene-β-d-fructofuranose 14
9a (188 mg, 0.47 mmol) in dry DMF (3 mL), NaH (60% in mineral oil, 46 mg, 0.98 mmol) was added and the reaction mixture was stirred at r.t. for 1 h. A solution of 13 or 17
13 (225 mg, 0.39 mmol) in anhyd DMF (4 mL) was then added, the reaction mixture was further stirred at r. t. for 3 h, quenched by addition of H2O (2 mL), concentrated and the resulting residue was purified by column chromatography using EtOAc-toluene (1:6) as eluent to give 15 (190 mg, 54%) or 18 (220 mg, 62%).
General Procedure for Xylylene-Mediated Synthesis of Type II DFA Derivatives (16, 19, and 20)
To a solution of the corresponding m- or o-xylylene-tethered precursor 15 or 18 (280 mg, 0.31 mmol) in CH2Cl2 (20 mL) at -78 °C under Ar, TfOH (41 µL) was added. The reaction mixture was allowed to reach r.t. and stirred for 1 h, then quenched by addition of Et3N (0.1 mL) and concentrated. Column chromatography of the resulting residue (1:3 → 1:1 EtOAc-PE for 15; 1:5 → 1:2 EtOAc-PE for 18) afforded 16 (142 mg, 59%) or 19 (48.7 mg, 20.8%) and 20 (72.8 mg, 31.2%), respectively, as the only intramolecular reaction products.
Selected data for 16: [α]D 22 +10.1 (c 0.9, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.16 (d, 1 H, J 1a ′,1b ′ = 11.6 Hz, H-1′a), 4.14 (m, 1 H, H-5), 4.00 (d, 1 H, J 3,4 = 2.5 Hz, H-3), 3.99 (m, 1 H, H-6a), 3.96 (d, 1 H, J 1a,1b = 11.8 Hz, H-1a), 3.94 (dd, 1 H, J 3 ′,4 ′ = 9.5 Hz, J 4 ′,5 ′ = 3.2 Hz, H-4′), 3.83 (d, 2 H, J 6a ′,6b ′ = 12.0 Hz, H-6′a, H-1b), 3.74 (m, 1 H, H-6b), 3.72 (m, 1 H, H-5′), 3.61 (d, 1 H, H-3′), 3.60 (d, 1 H, H-6′b), 3.54 (dd, 1 H, J 4,5 = 7.5 Hz, H-4), 3.39 (d, 1 H, H-1′b). 13C NMR (125.7 MHz, CDCl3): δ = 102.3 (C-2), 95.9 (C-2′), 89.0 (C-3), 85.1 (C-4), 80.1 (C-5), 78.9 (C-3′), 78.6 (C-4′), 73.5 (C-5′), 75.8 (CH2Ph), 74.8 (C-6), 74.3, 72.5, 72.3, 71.2 (CH2Ph), 62.5 (C-1′), 62.0 (C-1), 60.3 (C-6′). MS-FAB: m/z (%) = 809 (60) [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.07; H, 6.07.
17General Procedure for the Synthesis of Fully Unprotected DFAs (4 and 5) Catalytic hydrogenation of 16 and 19 or 20 (0.038 mmol) with 10% Pd/C in EtOAc-MeOH (1:1) containing 10% HCOOH (1 mL) at 1 atm overnight, afforded the fully unprotected bis-spiro fructodisaccharide 4 or 5 in quantitative yield having physicochemical properties identical to those reported.2,4d
19Selected data for 19: [α]D 22 +4.9 (c 0.8, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.06 (d, 1 H, J 6a,6b = 12.6 Hz, H-6a), 4.01 (br d, 1 H, J 4,5 = 8.7 Hz, H-5), 3.98 (dd, 1 H, J 3 ′,4 ′ = 9.7 Hz, J 4 ′,5 ′ = 3.1 Hz, H-4′), 3.88 (d, 1 H, J 3,4 = 3.7 Hz, H-3), 3.86 (d, 1 H, J 1a,1b = 13.7 Hz, H-1a), 3.84 (m, 1 H, H-6b), 3.72 (dd, H, J 6a ′,6b ′ = 11.5 Hz, J 5 ′,6a ′ = 3.0 Hz, H-6′a), 3.71 (m, 1 H, H-5′), 3.70 (d, 1 H, H-1b), 3.65 (d, 1 H, H-6′b), 3.61 (dd, 1 H, H-4), 3.55 (d, 1 H, H-3′), 3.39 (d, 1 H, J 1a ′,1b ′ = 12.0 Hz, H-1′a), 3.05 (d, 1 H, H-1′b). 13C NMR (125.7 MHz, CDCl3): δ = 102.0 (C-2), 95.2 (C-2′), 88.8 (C-3), 86.2 (C-4), 79.6 (C-5), 78.9 (C-4′), 74.5 (C-3′), 73.4 (C-5′), 72.9, 72.5, 72.4, 72.0, 71.4 (CH2Ph), 71.2 (C-6), 68.5 (CH2Ph), 62.6 (C-1′), 62.4 (C-1), 60.6 (C-6′). ESI-MS: m/z = 809 [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.13; H, 6.48.
20Selected data for 20: [α]D 22 +18.1 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 4.59 (d, 1 H, J 1a,1b = 12.5 Hz, H-1a), 4.24 (dt, 1 H, J 5,6b = 10.5 Hz, J 5,6a = J 4,5 = 4.5 Hz, H-5), 4.19 (d, 1 H, J 1a ′,1b ′ = 11.4 Hz, H-1′a), 4.15 (d, 1 H, J 3 ′,4 ′ = 7.9 Hz, H-3′), 4.13 (dd, 1 H, J 3,4 = 6.3 Hz, H-4), 4.05 (dd, 1 H, J 6a ′,6b ′ = 12.2 Hz, J 5 ′,6a ′ = 5.8 Hz, H-6′a), 3.87 (d, 1 H, H-3), 3.74 (dt, 1 H, J 4 ′,5 ′ = J 5 ′,6b ′ = 3.0 Hz, H-5′), 3.70 (d, 1 H, H-1b), 3.65 (dd, 1 H, J 6a,6b = 10.5 Hz, H-6a), 3.60 (t, 1 H, H-6b), 3.52 (d, 1 H, H-1′b), 3.45 (dd, 1 H, H-6′b), 3.41 (dd, 1 H, H-4′). 13C NMR (125.7 MHz, CDCl3): δ = 101.4 (C-2), 97.7 (C-2′), 85.1 (C-4), 84.7 (C-3), 79.0 (C-5), 78.0 (C-3′), 76.3 (C-4′), 72.9, 72.7, 72.0 (CH2Ph), 71.9 (C-6), 71.6 (C-5′), 71.2, 70.9, 70.2 (CH2Ph), 63.8 (C-1′), 61.0 (C-6′), 59.8 (C-1). ESI-MS: m/z = 809 [M + Na]+. Anal. Calcd for C48H50O10: C, 73.26; H, 6.40. Found: C, 73.13; H, 6.06.