Subscribe to RSS
DOI: 10.1055/s-2007-991059
Nucleophilic Additions and Redox Reactions of Polyhydroxypyrroline N-Oxides on the Way to Pyrrolidine Alkaloids: Total Synthesis of Radicamine B
Publication History
Publication Date:
25 September 2007 (online)
Abstract
Nucleophilic addition of aryl Grignard reagents to (2R,3R,4R)-3,4-bis(benzyloxy)-2-(benzyloxymethyl)-3,4-dihydro-2H-pyrrole 1-oxide afford straightforwardly trihydroxylated pyrrolidine alkaloids. Organometallic additions take place with complete anti selectivity. In order to gain access to all four diastereomers with different configuration at C-2 and C-5, an oxidation-reduction protocol is developed. The high selectivity observed in the nucleophilic addition reaction allowed preparation of natural radicamine B in only two steps and high chemical yield.
Key words
alkaloids - nucleophilic additions - oxidations - nitrones - pyrrolidines
-
1a
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 -
1b
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
1c
Asano N. Curr. Top. Med. Chem. 2003, 3: 471 -
1d
Ayad TY.Genisson Y.Baltas M. Curr. Org. Chem. 2004, 8: 1211 -
1e
de Melo EB.Domes A.Carvalho I. Tetrahedron 2006, 62: 10277 -
1f
Caines MEC.Hancock SM.Tarling CA.Wrodnigg TM.Stick RV.Stütz AE.Vasella A.Withers SG.Strynadka NCJ. Angew. Chem. Int. Ed. 2007, 46: 4474 -
2a
Stütz AE. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond Wiley-VCH; Weinheim: 1999. -
2b
Compain P.Martin OR. Iminosugars: From Synthesis to Therapeutic Applications Wiley; Chichester: 2007. in press -
3a
Shibano M.Tsukamoto D.Masuda A.Tanaka Y.Kusano G. Chem. Pharm. Bull. 2001, 49: 1362 -
3b
Shibano M.Tsukamoto D.Kusano G. Heterocycles 2002, 57: 1539 -
3c
Chandrasekar S.Jagadeshwar V.Prakash SJ. Tetrahedron 2005, 46: 3127 -
3d
Haddad M.Larcheveque M. Synlett 2003, 274 -
3e
Toyao A.Tamura O.Tagaki H.Ishibashi H. Synlett 2003, 35 -
3f
Severino EA.Correia CRD. Org. Lett. 2000, 2: 3039 -
3g
See also ref. 5 and 6.
- 4
Goti A.Cicchi S.Mannucci V.Cardona F.Guarna F.Merino P.Tejero T. Org. Lett. 2003, 5: 4235 - 5
Gurjar MK.Borhade RG.Puranik VG.Ramana CV. Tetrahedron Lett. 2006, 47: 6979 - 6
Yu C.-Y.Huang M.-H. Org. Lett. 2006, 8: 3021 -
8a
Cardona F.Faggi E.Liguori F.Cacciarini M.Goti A. Tetrahedron Lett. 2003, 44: 2315 -
8b
Carmona AT.Whigtman RH.Robina I.Vogel P. Helv. Chim. Acta 2003, 86: 3066 -
8c
Desvergnes S.Py S.Vallée Y. J. Org. Chem. 2005, 70: 1459 -
8d
Cicchi S.Marradi M.Vogel P.Goti A. J. Org. Chem. 2006, 71: 1614 -
8e
Revuelta J.Cicchi S.Goti A.Brandi A. Synthesis 2007, 485 - 10
Marradi M.Cicchi S.Delso I.Rosi L.Tejero T.Merino P.Goti A. Tetrahedron Lett. 2005, 46: 1287 -
11a
Goti A.Cicchi S.Fedi V.Nannelli L.Brandi A. J. Org. Chem. 1997, 62: 3119 -
11b
Cicchi S.Goti A.Brandi A. J. Org. Chem. 1995, 60: 4743 - 12 Semiempirical calculations (PM3) demonstrated a slightly higher stability of 15 (ΔHf = -80.60 kcal/mol), with respect to 14 (ΔHf = -79.21 kcal/mol)
- 13
Cicchi S.Marradi M.Goti A.Brandi A. Tetrahedron Lett. 2001, 42: 6503 - 15
Yu Y.Singh SK.Liu A.Li T.-K.Liu LF.LaVoice EJ. Bioorg. Med. Chem. 2003, 11: 1475 - 16
Merino P.Revuelta J.Tejero T.Cicchi S.Goti A. Eur. J. Org. Chem. 2004, 776
References and Notes
In their original papers, appeared during the preparation of this manuscript, Gurjar (ref. 5) and Yu (ref. 6) reported the synthesis of the enantiomers of the natural products since they started from ent-5, synthesizing ent-1 and ent-2. Indeed, Yu et al. (ref. 6) revised the configuration of both natural radicamines A and B as those given in Figure [1] .
9Data for 8: [α]D 20 +57 (c 1.11, H2O). 1H NMR (400 MHz, D2O): δ = 3.63 (ddd, J = 8.2, 5.5, 4.1 Hz, 1 H, H5), 3.83 (dd, J = 13.3, 6.3 Hz, 1 H, CH 2OH), 3.88 (dd, J = 13.3, 4.5 Hz, 1 H, CH 2OH), 4.11 (t, J = 7.5 Hz, 1 H, H4), 4.39 (d, J = 9.9 Hz, 1 H, H2), 4.43 (dd, J = 10.0, 6.9 Hz, 1 H, H3), 7.37-7.47 (m, 5 H, Ar). 13C NMR (100 MHz, D2O): δ = 58.1 (CH2OH), 61.9 (C2), 63.2 (C5), 73.7 (C3), 77.5 (C4), 128.3 (Ar), 128.5 (Ar), 130.3 (Ar), 131.3 (Ar). Anal. Calcd for C11H16NO3Cl: C, 53.77; H, 6.56; N, 5.70. Found: C, 53.92; H, 6.74; N, 5.68.
14Data for 15: [α]D
20 +45 (c 0.41, H2O). 1H NMR (400 MHz, D2O): δ = 3.86-3.96 (m, 3 H, H5, CH
2OH), 4.35 (t, J = 3.3 Hz, 1 H, H4), 4.41 (d, J = 5.9 Hz, 1 H, H2), 4.49 (dd, J = 5.9, 3.1 Hz, 1 H, H3), 7.40-7.50 (m, 5 H, Ar). 13C NMR (100 MHz, D2O): δ = 56.9 (CH2OH), 62.9 (C2), 67.6 (C5), 74.5 (C3), 79.8 (C4), 128.4 (Ar), 129.4 (Ar), 130.0 (Ar), 132.1 (Ar). Anal. Calcd for C11H16NO3Cl: C, 53.77; H, 6.56; N, 5.70. Found: C, 53.70; H, 6.62; N, 5.79.
Data for 16: [α]D
20 +78 (c 0.54, H2O). 1H NMR (400 MHz, D2O): δ = 3.64 (ddd, J = 8.4, 4.8, 3.5 Hz, 1 H, H5), 3.85 (dd, J = 12.2, 8.6 Hz, 1 H, CH
2OH), 3.95 (dd, J = 12.2, 5.0 Hz, 1 H, CH
2OH), 4.11 (dd, J = 3.4, 1.3 Hz, 1 H, H4), 4.37 (dd, J = 3.3, 1.2 Hz, 1 H, H3), 4.85 (d, J = 3.3 Hz, 1 H, H2), 7.34-7.40 (m, 5 H, Ar). 13C NMR (100 MHz, D2O): δ = 59.4 (CH2OH), 64.8 (C5), 67.5 (C2), 75.9 (C3), 76.6 (C4), 127.5 (Ar), 128.9 (Ar), 129.1 (Ar), 130.3 (Ar). Anal. Calcd for C11H16NO3Cl: C, 53.77; H, 6.56; N, 5.70. Found: C, 53.88; H, 6.59; N, 5.83.
Data for 17: [α]D
20 +27 (c 0.10, H2O). 1H NMR (400 MHz, D2O): δ = 3.90 (dd, J = 12.0, 8.2 Hz, 1 H, CH
2OH), 3.98 (dd, J = 12.1, 5.1 Hz, 1 H, CH
2OH), 3.98-4.06 (m, 1 H, H5), 4.30-4.34 (m, 1 H, H2), 4.46 (dd, J = 4.3, 1.3 Hz, 1 H, H4), 4.81-4.85 (s, 1 H, H3), 7.34-7.43 (m, 5 H, Ar). 13C NMR (100 MHz, D2O): δ = 58.3 (CH2OH), 62.5 (C2), 64.0 (C4), 75.0 (C3), 77.4 (C5), 127.8 (Ar), 128.8 (Ar), 129.1 (Ar), 131.3 (Ar), 132.1 (Ar). Anal. Calcd for C11H16NO3Cl: C, 53.77; H, 6.56; N, 5.70. Found: C, 53.85; H, 6.40; N, 5.45.
Data for 2·HCl: [α]D
20 +81 (c 0.25, H2O). 1H NMR (400 MHz, D2O): δ = 3.57 (ddd, J = 4.0, 6.2, 8.5 Hz, 1 H, H5), 3.81 (dd, J = 6.2, 12.6 Hz, 1 H, CH
2OH), 3.86 (dd, J = 4.0, 12.6 Hz, 1 H, CH
2OH), 4.08 (t, J = 7.7 Hz, 1 H, H4), 4.31 (d, J = 10.2 Hz, 1 H, H2), 4.37 (dd, J = 7.5, 10.2 Hz, 1 H, H3), 6.87 (d, J = 8.7 Hz, 2 H, ArH), 7.32 (d, J = 8.7 Hz, 2 H, ArH). 13C NMR (100 MHz, D2O): d = 58.2 (CH2OH), 61.6 (C2), 62.8 (C4), 73.6 (C3), 77.1 (C5), 116.2 (Ar), 122.9 (Ar), 130.2 (Ar), 157.1 (Ar). Anal. Calcd for C11H16NO4Cl: C, 50.48; H, 6.48; N, 5.63. Found: C, 58.29; H, 6.73; N, 5.80.
Data for 2: [α]D
20 +74 (c 0.29, H2O) [Lit. for natural compound: +72 (c 0.10, H2O);3a Lit. for synthetic enantiomer: -69 (c 0.20, H2O)5 and -72.7 (c 0.17, H2O)6]. 1H NMR (400 MHz, D2O): δ = 2.83-2.91 (m, 1 H, H5), 3.35 (pseudo t, J = 9.9 Hz, 1 H, CH
2OH), 3.40-3.56 (m, 3 H, CH
2OH + H4 + H3), 3.73 (pseudo t, J = 7.8 Hz, 1 H, H2), 6.92 (d, J = 8.0 Hz, 2 H, ArH), 6.37 (d, J = 8.0 Hz, 2 H, ArH). 13C NMR (100 MHz, D2O): d = 62.3 (C2), 63.5 (CH2OH), 63.8 (C4), 78.4 (C3), 82.9 (C5), 116.7 (Ar), 126.1 (Ar), 128.8 (Ar), 165.7 (Ar). Anal. Calcd for C11H15NO4: C, 58.66; H, 6.71; N, 6.22. Found: C, 58.50; H, 6.90; N, 6.31.