Abstract
The thalamus has connections with central autonomic centers involved in cardiovascular control and is enervated by noradrenergic fibers. The excitability of thalamic neurons is due to a reduction of ionic currents mediated by α1 -adrenoceptors. The brain renin- angiotensin system (RAS) and the peptide hormone arginine-vasopressin (AVP) are also involved in the central control of blood pressure, and fluid and electrolyte homeostasis. It has been extensively reported that aminopeptidase A (APA), aminopeptidase B (APB), aminopeptidase N (APN), and vasopressin-degrading cystyl aminopeptidase activity (AVP-DA) play an important role in the regulation of the activity of angiotensins and AVP. We have analyzed the effect of α1 -adrenoceptor blockade by doxazosin on RAS-regulating aminopeptidase activities and AVP-DA in soluble and membrane-bound fractions of male and female rat thalamus. Our results show that α1 -adrenoceptors blockade by doxazosin does not modify the RAS through its degrading peptidases at thalamic level either in male or female rats. However, α1 -adrenoceptors blockade shows gender differences in AVP-DA, increasing in males but not in females, supporting an increased capacity of males against females to degrade AVP and, therefore, to regulate cardiovascular homeostasis, under this pharmacological manipulation.
Key words
α1 -adrenoceptor - sex differences - brain renin-angiotensin system - vasopressin - thalamus - ingestive behavior
References
1 Kandel ER, Schwartz JH, Jessell TM. Principles of neural science . New York: McGraw-Hill, Health Professions Division 2000
2
Stotz-Potter E, Benarroch E.
Removal of GABAergic inhibition in the mediodorsal nucleus of the rat thalamus leads to increases in heart rate and blood pressure.
Neurosci Lett.
1998;
247
127-130
3
Moore RY, Bloom FE.
Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems.
Annu Rev Neurosci.
1979;
2
113-168
4
Rogawski MA, Aghajanian GK.
Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation.
Nature.
1980;
287
731-734
5
Kayama Y, Negi T, Sugitani M, Iwama K.
Effects of locus coeruleus stimulation on neuronal activities of dorsal lateral geniculate nucleus and perigeniculate reticular nucleus of the rat.
Neuroscience.
1982;
7
655-666
6
Kayama Y.
Ascending, descending and local control of neuronal activity in the rat lateral geniculate nucleus.
Vision Res.
1985;
25
339-347
7
MacCormick DA.
Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus.
J Neurosci.
1992;
12
278-289
8
Reudelhuber TL.
The renin-angiotensin system: peptides and enzy-mes beyond angiotensin II.
Curr Opin Nephrol Hypertens.
2005;
14
155-159
9
Chansel D, Czekalski S, Vandermeersch S, Ruffet E, Fournie-Zaluski MC, Ardaillou R.
Characterization of angiotensin IV-degrading enzy-mes and receptors on rat mesangial cells.
Am J Physiol.
1998;
275
F535-F542
10 Barrett AJ, Rawlings ND, Woessner JF. Handbook of proteolytic enzymes . San Diego: Academic Press 1998
11
Ward PE, Benter IF, Dick L, Wilk S.
Metabolism of vasoactive peptides by plasma and purified renal aminopeptidase M.
Biochem Pharmacol.
1990;
40
1725-1732
12
Ardaillou R.
Active fragments of Ang II: enzymatic pathways of synthesis and biological effects.
Current Opn Nephrol Hypertens.
1997;
6
28-34
13
Szczepanska-Sadowska E.
Interaction of vasopressin and angiotensin II in central control of blood pressure and thirst.
Regul Pept.
1996;
66
65-71
14
Garcia MJ, Martinez-Martos JM, Mayas MD, Carrera MP, Ramirez-Exposito MJ.
Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of male mice.
Life Sci.
2003;
73
525-538
15 Paxinos G, Watson C. The rat brain in stereotaxic coordinates . Boston: Elsevier Academic Press 2005
16
Mayas MD, Ramirez-Exposito MJ, Garcia MJ, Ramirez M, Martinez-Martos JM.
Ethanol modifies differently aspartyl- and glutamyl-aminopeptidase activities in mouse frontal cortex synaptosomes.
Brain Res Bull.
2002;
57
195-203
17
Bradford MM.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem.
1976;
72
248-254
18
Laguna-Abreu MTC, Koenigkam-Santos M, Colleta AMD, Elias PCL, Moreira AC, Antunes-Rodriguez J, Elias LL, Castro M.
Time course of vasopressin and oxytocin secretion after stress in adrenalectomized rats.
Horm Metab Res.
2005;
37
84-88
19
Sivukhina EV, Jirikowski GF, Bernstein HG, Lewis JG, Herbert Z.
Expression of corticosteroid-binding protein in the human hypothalamus, co-localization with oxytocin and vasopressin.
Horm Metab Res.
2006;
38
253-259
20
Tribollet E, Ueta Y, Heitz F, Marguerat A, Koizumi K, Yamashita H.
Up-regulation of vasopressin and angiotensin II receptors in the thalamus and brainstem of inbred polydipsic mice.
Neuroendocrinology.
2002;
75
113-123
21
Trejo F, De la Vega MT, Arias-Montano JA.
Functional characterisation of alpha 1-adrenoceptor subtypes mediating noradrenaline-induced inositol phosphate formation in rat thalamus slices.
Eur J Pharmacol.
1996;
318
175-184
22
Araujo RC, Lima MP, Lomez ES, Bader M, Pesquero JB, Sumitani M, Pesquero JL.
Tonin expression in the rat brain and tonin-mediated central production of angiotensin II.
Physiol Behav.
2002;
76
327-333
23
Beresford MJ, Fitzsimons JT.
Intracerebroventricular angiotensin II-induced thirst and sodium appetite in rat are blocked by the AT1 receptor antagonist, Losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B.
Exp Physiol.
1992;
77
761-764
24
Avrith DB, Fitzsimons JT.
Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system.
J Physiol.
1980;
301
349-364
25
Wright JW, Morseth SL, Abhold RH, Harding JW.
Pressor action and dipsogenicity induced by angiotensin II and III in rats.
Am J Physiol.
1985;
249
R514-R521
26
Fregly MJ, Rowland NE.
Effect of a nonpeptide angiotensin II receptor antagonist, DuP 753, on angiotensin-related water intake in rats.
Brain Res Bull.
1991;
27
97-100
27
Kraly FS, Tribuzio RA, Kim YM, Keefe ME, Braun CJ, Newman BH.
Angiotensin AT1 and AT2 receptors contribute to drinking elicited by eating in rats.
Physiol Behav.
1995;
58
1099-1109
28
Dai WJ, Yao T.
Effects of dehydration and salt-loading on hypothalamic vasopressin mRNA level in male and female rats.
Brain Res.
1995;
676
178-182
29
Wang YX, Crofton JT, Miller J, Sigman CJ, Liu H, Huber JM, Brooks DP, Share L.
Sex difference in urinary concentrating ability of rats with water deprivation.
Am J Physiol.
1996;
270
R550-R555
30
Stone JD, Crofton JT, Share L.
Sex differences in central cholinergic and angiotensinergic control of vasopressin release.
Am J Physiol.
1992;
263
R1030-R1034
31
Crowley RS, Amico JA.
Gonadal steroid modulation of oxytocin and vasopressin gene expression in the hypothalamus of the osmotically stimulated rat.
Endocrinology.
1993;
133
2711-2718
32
Swenson KL, Sladek CD.
Gonadal steroid modulation of vasopressin secretion in response to osmotic stimulation.
Endocrinology.
1997;
138
2089-2097
33
Bhatnagar S, Dallman MF.
The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner.
Brain Res.
1999;
851
66-75
34
Novak CM, Harris JA, Smale L, Nunez AA.
Suprachiasmatic nucleus projections to the paraventricular thalamic nucleus in nocturnal rats (Rattus norvegicus) and diurnal nile grass rats (Arviacanthis niloticus).
Brain Res.
2000;
874
147-157
35
Moga MM, Weis RP, Moore RY.
Efferent projections of the paraventricular thalamic nucleus in the rat.
J Comp Neurol.
1995;
359
221-238
Correspondence
Dr. J.M. Martínez-Martos
Experimental and Clinical Physiopathology Research Group
Department of Health Sciences
Faculty of Experimental and Health Sciences
University of Jaén
Campus Universitario Las Lagunillas
23071 Jaén
Spain
Phone: +34/953/21 26 00
Fax: +34/953/21 26 00
Email: jmmartos@ujaen.es