Horm Metab Res 2007; 39(11): 845-848
DOI: 10.1055/s-2007-991176
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Serum Level of Advanced Glycation End-Products (AGEs) is an Independent Determinant of Plasminogen Activator Inhibitor-1 (PAI-1) in Nondiabetic General Population

S. Yamagishi 1 , H. Adachi 1 , M. Takeuchi 2 , M. Enomoto 1 , K. Furuki 1 , T. Matsui 1 , K. Nakamura 1 , T. Imaizumi 1
  • 1Department of Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine, Kurume, Japan
  • 2Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
Further Information

Publication History

received 20.11.2006

accepted 11.04.2007

Publication Date:
09 November 2007 (online)

Abstract

Glucose can react nonenzymatically with amino groups of proteins to form senescent macroprotein derivatives termed advanced glycation end-products (AGEs). Recently, AGEs have been shown to play an important role in atherosclerosis even in nondiabetic subjects. However, the molecular mechanism underlying this is not fully understood. We have now investigated whether serum AGE level was an independent determinant of plasminogen activator inhibitor-1 (PAI-1), a major physiological inhibitor of fibrinolysis, in nondiabetic general population. One-hundred and eighty-six nondiabetic Japanese subjects underwent a complete history and physical examination, determination of blood chemistries, PAI-1, and AGEs. Uni- and multivariate analyses were applied for the determinants of PAI-1 levels. The average PAI-1 levels were 29.7±23.8 ng/ml in males and 21.8±17.1 ng/ml in females, respectively. Univariate regression analysis showed that PAI-1 levels were associated with age (inversely, p=0.003), male (p=0.003), body mass index (BMI) (p<0.001), HDL-cholesterol (inversely, p<0.001), triglycerides (p<0.001), fasting plasma glucose (p<0.001), insulin (p<0.001), uric acids (p<0.001), AGEs (p=0.037), and alcohol intake (p<0.001). By the use of multiple regression analyses, BMI (p<0.001), male (p=0.003), fasting plasma glucose (p=0.005), age (inversely, p=0.017), and AGEs (p=0.034) remained significant. The present study is the first demonstration that serum AGE level was one of the independent determinants of PAI-1 in nondiabetic general population. The AGE-associated thrombogenic abnormality may be involved in atherogenesis in nondiabetic subjects.

References

  • 1 Grandhee S, Monnier VM. Mechanism of formation of the Maillard protein cross-link pentosidine.  J Biol Chem. 1991;  18 11649-11653
  • 2 Brownlee M. Advanced protein glycosylation in diabetes and aging.  Ann Rev Med. 1995;  46 223-234
  • 3 Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy.  Curr Pharm Des. 2005;  11 2279-2299
  • 4 Vlassara H, Bucala R, Striker L. Pathobenic effects of advanced glycosylation: Biochemical, biologic, and clinical implications for diabetes and aging.  Lab Invest. 1994;  70 138-150
  • 5 Rahbah S, Figarola JL. Novel inhibitors of advanced glycation end products.  Arch Biochem Biophys. 2003;  419 63-79
  • 6 Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection.  Curr Atheroscler Res. 2000;  5 430-436
  • 7 Kanauchi M, Hashimoto T, Tsujimoto N. Advanced glycation end products in nondiabetic patients with coronary artery disease.  Diabetes Care. 2001;  24 1620-1623
  • 8 Kilhovd BK, Juutilainen A, Lehto S, Ronnemaa T, Torjesen PA, Birkeland KI, Berg TJ, Hanssen KF, Laakso M. High serum levels of advanced glycation end products predict increased coronary heart disease mortality in nondiabetic women but not in nondiabetic men. A population-based 18-year follow-up study.  Arterioscler Thromb Vas Biol. 2005;  25 1-6
  • 9 Smith FB, Lee AJ, Fowkes FGR, Prince JF, Rumley A, Lowe GDO. Hemostatic factors as predictors of ischemic heart disease and stroke in the Edinburgh Artery Study.  Arterioscler Thromb Vasc Biol. 1997;  17 3321-3325
  • 10 Vaughan DE. PAI-1 and atherothrombosis.  J Thromb Haemost. 2005;  3 1879-1883
  • 11 Fay WP. Plasminogen activator inhibitor 1, fibrin, and the vascular response to injury.  Trends Cardiovasc Med. 2004;  14 196-202
  • 12 Declerck PJ, Alessi MC, Verstreken M, Kruithof EKO, Juhan-Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay.  Blood. 1988;  71 220-225
  • 13 Ueda S, Yamagishi S, Takeuchi M, Kohno K, Shibata R, Matsumoto Y, Kaneyuki U, Fujimura T, Hayashida A, Okuda S. Oral Adsorbent AST-120 decreases serum levels of AGEs in patients with chronic renal failure.  Mol Med. 2006;  12 180-184
  • 14 Kohler HP, Grant PJ. Plasminogen activator inhibitor type 1 and coronary artery disease.  N Engl J Med. 2000;  342 1792-1801
  • 15 Christ G, Kostner K, Zehetgruber M, Binder BR, Gulba D, Huber K. Plasmin activation system in restenosis: role in pathogenesis and clinical prediction.  J Thromb Thrombolysis. 1999;  7 277-285
  • 16 Hamsten A, Faire U de, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction.  Lancet. 1987;  2 3-9
  • 17 Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H. Advanced glycation end products inhibit prostacyclin production and induce plasminogen activator-1 in human microvascular endothelial cells.  Diabetologia. 1998;  41 1435-1441
  • 18 Uchida Y, Ohba K, Yoshioka T, Irie K, Muraki T, Maru Y. Cellular carbonyl stress enhances the expression of plasminogen activator inhibitor-1 in rat white adipocytes via reactive oxygen species-dependent pathway.  J Biol Chem. 2004;  279 4075-4083
  • 19 Alessi MC, Juhan-Vagus I. PAI-1 and the metabolic syndrome. Links, causes, and consequences.  Arteriscler Thromb Vasc Biol. 2006;  26 2200-2207
  • 20 Bellin C, Wiza DH de, Wiernsperger NF, Rosen P. Generation of reactive oxygen species by endothelial and smooth muscle cells: Influence of hyperglycemia and metformin.  Horm Metab Res. 2006;  38 732-739
  • 21 Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease.  Diabetes Care. 1999;  22 1543-1548
  • 22 Tan KCB, Chow WS, Ai VHG, Metz C, Bucala R, Lam KSL. Advanced glycation end products and endothelial dysfunction in type 2 diabetes.  Diabetes Care. 2002;  25 1055-1059
  • 23 Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetes nephropathy.  Proc Natl Acad Sci USA. 1997;  94 6474-6479
  • 24 He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: Inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration.  Diabetes. 1999;  48 1308-1315
  • 25 Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Levels of an advanced glycation end product is genetically determined: a study of normal twins.  Diabetes. 2003;  52 2441-2444

Correspondence

S. YamagishiMD, PhD 

Department of Medicine

Division of Cardiovascular Medicine

Kurume University School of Medicine

67 Asahi-machi

830-0011 Kurume

Japan

Email: shoichi@med.kurume-u.ac.jp