ABSTRACT
Endoplasmic reticulum stress, initiated by protein overload or malfolding, activates a complex network of interacting and parallel responses that dampen the stress. However, when the protective response is insufficient, a set of responses leads to apoptosis. Coupled with the latter are promotion of lipid synthesis and proinflammatory responses. Evidence has been mounting for an important role of the endoplasmic reticulum (ER) stress response in the pathogenesis of chronic viral hepatitis, insulin resistance and nonalcoholic fatty liver disease, ischemia-reperfusion injury, genetic disorders of protein malfolding, and alcoholic liver disease. In the latter, a key candidate for inducing ER stress is hyperhomocysteinemia. Betaine treatment promotes removal of homocysteine and prevents ER stress, fatty liver, and apoptosis in a mouse model of alcohol-induced liver disease. With increasing interest in the potential role of ER stress in liver disease, greater understanding of pathophysiology, prevention, and treatment of liver disease is anticipated.
KEYWORDS
Unfolded protein response - fatty liver - apoptosis - hyperhomocysteinemia - chaperones.
REFERENCES
1
Ji C, Kaplowitz N.
ER stress: can the liver cope?.
J Hepatol.
2006;
45
321-333
2
Wu J, Kaufman R J.
From acute ER stress to physiological roles of the unfolded protein response.
Cell Death Differ.
2006;
13
374-384
3
Ogata M, Hino S, Saito A et al..
Autophagy is activated for cell survival after endoplasmic reticulum stress.
Mol Cell Biol.
2006;
26
9220-9231
4
Cullinan S B, Zhang D, Hannink M et al..
Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival.
Mol Cell Biol.
2003;
23
7198-7209
5
Hollien J, Weissman J.
Decay of endoplasmic reticulum localized mRNAs during the unfolded protein response.
Science.
2006;
313
104-107
6
Hetz C, Bernasconi P, Fisher J et al..
Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α.
Science.
2006;
312
572-576
7
Tan Y, Dourdin N, Wu C et al..
Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis.
J Biol Chem.
2006;
281
16016-16024
8
Hu P, Han Z, Couvillon A, Kaufman R, Exton J.
Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-kB activation and down-regulation of TRAF2 expression.
Mol Cell Biol.
2006;
26
3071-3084
9
Di Sano F, Ferraro E, Tufi R et al..
Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism.
J Biol Chem.
2006;
281
2693-2700
10
Marciniak S J, Yun C, Oyadomari S et al..
CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.
Genes Dev.
2004;
18
3066-3077
11
Boyce M, Bryant K, Jousse C et al..
A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress.
Science.
2005;
307
935-939
12
Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H.
TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death.
EMBO J.
2005;
24
1243-1255
13
Song L, De Sarno P, Jope R S.
Central role of glycogen synthase kinase-3β in endoplasmic reticulum stress-induced caspase-3 activation.
J Biol Chem.
2002;
277
44701-44708
14
Scheuner D, Patel R, Wang F et al..
Double-stranded RNA-dependent protein kinase phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 mediates apoptosis.
J Biol Chem.
2006;
281
21458-21468
15
Liang G, Audas T E, Li Y et al..
Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element.
Mol Cell Biol.
2006;
26
7999-8010
16
Zhang K, Shen X, Wu J et al..
Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response.
Cell.
2006;
124
587-599
17
Lee J N, Ye J.
Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1.
J Biol Chem.
2004;
279
45257-45265
18
Tardif K D, Waris G, Siddiqui A.
Hepatitis C virus, ER stress, and oxidative stress.
Trends Microbiol.
2005;
13
159-163
19
Zheng Y, Gao B, Li Y et al..
Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response.
J Microbiol.
2005;
43
529-536
20
Pavio N, Romano P, Graczyk T, Feintstone S, Taylor D.
Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2α kinase PERK.
J Virol.
2003;
77
3578-3585
21
Tardif K D, Mori K, Kaufman R, Siddiqui A.
Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response.
J Biol Chem.
2004;
279
17158-17164
22
Benali-Furet N L, Chami M, Houel L et al..
Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion.
Oncogene.
2005;
24
4921-4933
23
Tardif K D, Siddiqui A.
Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic replicon-expressing cells.
J Virol.
2003;
77
11644-11650
24
Sakon M, Ariyoshi H, Umeshita K, Monden M.
Ischemia-reperfusion of the liver with special reference to calcium-dependent mechanisms.
Surg Today.
2002;
32
1-12
25
Bailly-Maitre B, Fondevila C, Kaldas F et al..
Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury.
Proc Natl Acad Sci USA.
2006;
103
2809-2814
26
Chae H J, Kim H, Xu C et al..
BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress.
Mol Cell.
2004;
15
355-366
27
Vilatoba M, Eckstein C, Bilbao G et al..
Sodium 4-phenybutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis.
Surgery.
2005;
138
342-351
28
Kruse K B, Dear A, Kaltenbrun E R et al..
Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease.
Am J Pathol.
2006;
168
1299-1308
29
Bergeron A, Jorquera R, Orejuela D, Tanguay R.
Involvement of endoplasmic reticulum stress in hereditary tyrosinemia type I.
J Biol Chem.
2006;
281
5329-5334
30
Hidvegi T, Schmidt B, Hale P, Perlmutter D.
Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activated caspases -4 and -12 NFkB, and BAP31 but not the unfolded protein response.
J Biol Chem.
2005;
280
39002-39015
31
Du K, Herzig S, Kulkarni R, Montminy M.
TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.
Science.
2003;
300
1574-1577
32
Özcan U, Cao Q, Yilmaz E et al..
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.
Science.
2004;
306
457-461
33
Nakatani Y, Kaneto H, Kawamori D et al..
Involvement of endoplasmic reticulum stress in insulin resistance and diabetes.
J Biol Chem.
2005;
280
847-851
34
Wang D, Wei Y, Pagliassotti M.
Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis.
Endocrinology.
2006;
147
943-951
35
Borradaile N M, Han X, Harp J et al..
Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.
J Lipid Res.
2006;
47
2726-2737
36
Solinas G, Naugler W, Galimi F, Lee M S, Karin M.
Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates.
Proc Natl Acad Sci USA.
2006;
103
16454-16459
37
Burrows J A, Willis L, Perlmutter D.
Chemical chaperones mediate increased secretion of mutant α1antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency.
Proc Natl Acad Sci USA.
2000;
97
1796-1801
38
Cuchel M, Bloedon L, Szapary P et al..
Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia.
N Engl J Med.
2007;
356
148-156
39
Zhou H, Gurley E, Jarujaron S et al..
HIV protease inhibitors activate the unfolded protein response and disrupt lipid metabolism in primary hepatocytes.
Am J Physiol.
2006;
291
G1071-G1080
40
Werstuck G H, Lentz S, Dayal S et al..
Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways.
J Clin Invest.
2001;
107
1263-1273
41
Hamelet J, Demuth K, Paul J, Delabar J, Janel N.
Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice.
J Hepatol.
2007;
46
151-159
42
Watanabe M, Osada J, Aratani Y et al..
Mice deficient in cystathionine beta synthase: animal models for mild and severe homocysteinemia.
Proc Natl Acad Sci USA.
1995;
92
1585-1589
43
Chen Z, Karaplis A, Ackerman S et al..
Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.
Hum Mol Genet.
2001;
10
433-443
44
Ji C, Kaplowitz N.
Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.
Gastroenterology.
2003;
124
1488-1499
45
Sakuta H, Suzuki T.
Alcohol consumption and plasma homocysteine.
Alcohol.
2005;
37
73-77
46
Coll O, Colell A, Garcia-Ruiz C et al..
Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.
Hepatology.
2003;
38
692-702
47
Ji C, Deng Q, Kaplowitz N.
Role of TNF-α in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury.
Hepatology.
2004;
40
442-451
48
Song Z, Zhou Z, Uriarte S et al..
S-adenosylhomocysteine sensitizes to TNF-α hepatotoxicity mice and liver cells: a possible etiological factor in alcoholic liver disease.
Hepatology.
2004;
40
989-997
49
Kharbanda K K, Mailliard M, Baldwin C et al..
Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.
J Hepatol.
2007;
46
314-321
50
Li Z, Agellon L, Allen T et al..
The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.
Cell Metab.
2006;
3
321-331
51
Sparks J D, Collins H, Chirieac D et al..
Hepatic very-low density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methytransferase.
Biochem J.
2006;
395
363-371
52
Ji C, Mehrian-Shai R, Chan C, Hsu Y, Kaplowitz N.
Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding.
Alcohol Clin Exp Res.
2005;
29
1496-1503
53
Ji C, Chan C, Kaplowitz N.
Predominant role of sterol response element binding proteins(SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model.
J Hepatol.
2006;
45
717-724
54
You M, Matsumoto M, Pacold C, Cho W, Crabb D.
The role of AMP-activated protein kinase in the action of ethanol in the liver.
Gastroenterology.
2004;
127
1798-1808
55
Mari M, Caballero F, Collel A et al..
Mitochondrial free cholesterol loading sensitizes to TNF-and Fas-mediated steatohepatitis.
Cell Metab.
2006;
4
185-198
56
Kaplowitz N, Ji C.
Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum.
J Gastroenterol Hepatol.
2006;
21(suppl 3)
S7-S9
Neil KaplowitzM.D.
Professor of Medicine, Keck School of Medicine
University of Southern California, 2011 Zonal Avenue, HMR 101, Los Angeles, CA 90033
Email: kaplowit@usc.edu