Subscribe to RSS
DOI: 10.1055/s-2007-992128
© Georg Thieme Verlag KG Stuttgart · New York
Epitope Analysis of GAD65 Binding in both Cord Blood and at the Time of Clinical Diagnosis of Childhood Type 1 Diabetes
Publication History
received 17.10.2006
accepted 18.04.2007
Publication Date:
09 November 2007 (online)
Abstract
The GAD65 epitope immunoglobulin binding pattern in cord blood of children (n=37), who later developed type 1 diabetes at 3.2-14.9 years of age, was analyzed. First, the binding at diagnosis was compared with that in the cord blood serum. The next comparison was between the cord blood serum and the mothers’ serum taken at delivery. Basal GAD65 binding levels were determined in Protein A Sepharose-based radiobinding assays with 35S-labeled human and rat GAD65, rat GAD67 and GAD65/67 fusion proteins representing N-terminal (N), middle (M) and C-terminal (C) epitopes. In the first comparison, 28/37 children had GAD65 binding above 2.44 relative units (RU) (upper three quartiles), representing a marked increase from birth in the binding to human GAD65 (p<0.0001), rat GAD65 (p<0.0001), N- (p=0.04), M- (p<0.0001), C- (p=0.001), and M + C-epitopes (p<0.0001), but not to rat GAD67. At birth, 9/37 had GAD65 binding above 1.56 RU (upper quartile) demonstrating that their binding of human 35S-GAD65 was higher in cord blood than in the mother (p=0.008). Higher cord blood binding was also observed for the N- (p=0.02) terminal epitope but not for rat GAD65, rat GAD67, and the remaining epitopes. These data suggest that differences in the epitope GAD65 binding between mother and child at birth are limited. In contrast, the epitope pattern at diagnosis differed from that at birth, supporting the view that disease-associated epitopes develop between birth and diagnosis.
Key words
glutamic acid decarboxylase - type 1 (insulin-dependent) diabetes mellitus - cord blood islet autoantibodies - epitope analysis
References
- 1 Imagawa A, Hanafusa T, Tamura S, Moriwaki M, Itoh N, Yamamoto K, Iwahashi H, Yamagata K, Waguri M, Nanmo T, Uno S, Nakajima H, Namba M, Kawata S, Miyagawa J, Matsuzawa Y. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes. Diabetes. 2001; 50 1269-1273
-
2 Lernmark Å.
Cell-mediated immunity in type I (insulin-dependent) diabetes: Update 1984 . In: Immunology in Diabetes, Andreani D, Di Mario U, Federlin KF, Heding LG. London: Kimpton Medical Publications 1984: 121-131 - 3 Pipeleers D, Ling Z. Pancreatic beta cells in insulin-dependent diabetes. Diab Metab Rev. 1992; 8 209-227
- 4 Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and Coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994; 94 2125-2129
- 5 Lohmann T, Leslie RDG, Hawa M, Geysen M, Rodda S, Londei M. Immunodominant epitopes of glutamic acid decarboxylase 65 and 67 in insulin-dependent diabetes mellitus. Lancet. 1994; 343 1607-1608
- 6 Roep BO, Arden SD, Vries RRP de, Hutton JC. T-cell clones from a type-1 diabetes patient respond to insulin secretory granule proteins. Nature. 1990; 345 632-634
- 7 Leslie RD, Atkinson MA, Notkins AL. Autoantigens IA-2 and GAD in type I (insulin-dependent) diabetes. Diabetologia. 1999; 42 3-14
- 8 Schranz D, Lernmark. Immunology in diabetes: an update. Diab Metab Rev. 1998; 14 3-29
- 9 Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, Paguette TL. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983; 222 1337-1339
- 10 Wilkin T, Armitage M, Casey C, Pyke DA, Hoskins PJ, Rodier M, Diaz JL, Leslie RD. Value of insulin autoantibodies as serum markers for insulin-dependent diabetes mellitus. Lancet. 1985; 1 480-482
- 11 Grubin CE, Daniels T, Toivola B, Landin-Olsson M, Hagopian WA, Li L, Karlsen AE, Boel E, Michelsen B, Lernmark Å. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia. 1994; 37 344-350
- 12 Hagopian WA, Carani BS, Kockum I, Landin-Olsson M, Karlsen AE, Sundkvist G, Dahlquist G, Palmer JP, Lernmark Å. Glutamate decarboxylase-, insulin-, and islet cell-antibodies, and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest. 1995; 95 1505-1511
- 13 Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Jackson RA, Chase HP, Eisenbarth GS. Prediction of type 1 diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes. 1996; 45 926-933
- 14 Ivarsson SA, Ackefors M, Carlsson A, Ekberg G, Falorni A, Kockum I, Landin-Olsson M, Lernmark Å, Lindberg B, Sundkvist G, Svanberg L. Glutamate decarboxylase antibodies in non-diabetic pregnancies precedes insulin-dependent diabetes in the mother, but not necessarily in the offspring. Autoimmunity. 1997; 26 261-269
- 15 Padoa CJ, Banga JP, Madec AM, Ziegler M, Schlosser M, Ortqvist E, Kockum I, Palmer JP, Rolandsson O, Binder KA, Foote J, Luo D, Hampe CS. Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. Diabetes. 2003; 52 2689-2695
- 16 Luo D, Gilliam LK, Greenbaum C, Bekris LM, Hampe CS, Daniels T, Richter W, Marcovina SM, Rolandsson O, Landin-Olsson M, Kockum I, Lernmark Å. Conformation-dependent GAD65 autoantibodies in diabetes. Diabetologia. 2004; 47 1581-1591
- 17 Schlosser M, Banga JP, Madec AM, Binder KA, Strebelow M, Rjasanowski I, Wasmuth R, Gilliam LK, Luo D, Hampe CS. Dynamic changes of GAD65 autoantibody epitope specificities in individuals at risk of developing type 1 diabetes. Diabetologia. 2005; 48 922-930
- 18 Padoa CJ, Crowther NJ, Thomas JW, Hall TR, Bekris LM, Torn C, Landin-Olsson M, Ortqvist E, Palmer JP, Lernmark Å, Hampe CS. Epitope analysis of insulin autoantibodies using recombinant Fab. Clin Exp Immunol. 2005; 140 564-571
- 19 Menser MS, Forrest JM, Bransky RO. Rubella infection and diabetes mellitus. Lancet. 1978; 1 57-60
- 20 Rubinstein P, Walker ME, Fedun B, Witt ME, Cooper LZ, Ginsburg-Fellner F. The HLA system in congenital rubella patients with and without diabetes. Diabetes. 1982; 31 1088-1091
- 21 Dahlquist G, Ivarsson SA, Lindberg B, Forsgren M. Maternal enteroviral infection during pregnancy as a risk factor for childhood IDDM. Diabetes. 1995; 44 408-413
- 22 Hyöty H, Hiltunen M, Knip M, Laakkonen M, Vähäsalo P, Karjalainen J, Koskela P, Roivainen M, Leinikki P, Hovi T. A prospective study of the role of Coxsackie B and other enterovirus infections in the pathogenesis of IDDM. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetes. 1995; 44 652-657
- 23 Dahlquist G, Källén B. Maternal-child blood group incompatibility and other perinatal events increase the risk for early-onset type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1992; 35 671-675
- 24 Elfving AM, Lindberg BA, Landin-Olsson M, Hampe CS, Lernmark Å, Ivarsson S-A. Islet cell autoantibodies in cord blood from children with blood group incompatibility or hyperbilirubinemia. Autoimmunity. 2003; 36 111-115
- 25 Dahlquist G, Blom L, Lönnberg G. The Swedish Childhood Diabetes Study - a multivariate analysis of risk determinants for diabetes in different age groups. Diabetologia. 1991; 34 757-762
- 26 Dahlquist G, Blom L, Tuvemo T, Nyström L, Sandström A, Wall S. The Swedish Childhood Diabetes Study - results from a nine year case register and one year case-referent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia. 1989; 32 2-6
- 27 Lindberg B, Ivarsson S-A, Landin-Olsson M, Sundkvist G, Svanberg L, Lernmark Å. Islet autoantibodies in cord blood from children who developed type 1 (insulin-dependent) diabetes mellitus before 15 years of age. Diabetologia. 1999; 42 181-187
- 28 Rolandsson O, Hägg E, Hampe C, Sullivan Jr EP, Nilsson M, Jansson G, Hallmans G, Lernmark Å. Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass index. Diabetologia. 1999; 42 555-559
- 29 Hampe CS, rtquist E, Rolandsson O, Landin-Olsson M, Törn C, Ågren Å, Persson B, Schranz DB, Lernmark Å. Species-specific autoantibodies in type 1 diabetes. J Clin Endocrinol Metab. 1999; 84 643-648
- 30 Falorni A, Ackefors M, Carlberg C, Daniels T, Persson B, Robertson J, Lernmark Å. Diagnostic sensitivity of immunodominant epitopes of glutamic acid decarboxylase (GAD65) autoantibodies epitopes in childhood IDDM. Diabetologia. 1996; 39 1091-1098
- 31 Hampe CS, Hammerle LP, Bekris L, Örtqvist E, Kockum I, Rolandsson O, Landin-Olsson M, Törn C, Persson B, Lernmark Å. Recognition of glutamic acid decarboxylase (GAD) by autoantibodies from different GAD antibody-positive phenotypes. J Clin Endocrinol Metab. 2000; 85 4671-4679
- 32 Falorni A, Örtqvist E, Persson B, Lernmark Å. Radioimmunoassays for glutamic acid decarboxylase (GAD65) and GAD65 autoantibodies using 35S or 3H recombinant human ligands. J Immunol Meth. 1995; 186 89-99
- 33 Mire-Sluis AR, Das RG, Lernmark Å. The World Health Organization International Collaborative Study for islet cell antibodies. Diabetologia. 2000; 43 1282-1292
- 34 Elfving AM, Lindberg BA, Nyström L, Sundkvist G, Lernmark Å, Ivarsson S-A. Islet autoantibodies in cord blood from patients who developed type 1 diabetes mellitus at 15-30 years of age. The DISS Study Group. Autoimmunity. 2003; 36 227-231
- 35 Elfving M, Lindberg B, Lynch K, Månsson M, Sundkvist G, Lernmark Å, Ivarsson S-A. Number of islet autoantibodies present in newly-diagnosed type 1 diabetic children born to non-diabetic mothers is affected by islet autoantibodies present at birth. Pediatr Diabetes, in press. 2007;
- 36 Novak EJ, Örtqvist E, Nord E, Edwall L, Hampe CS, Bekris L, Persson BE, Lernmark Å. Stability of disease-associated antibody titers in pregnant women with type 1 diabetes with or without residual beta-cell function. Diabetes Care. 2000; 23 1019-1021
- 37 Roll U, Christie MR, Füchtenbusch M, Payton MA, Hawkes CJ, Ziegler AG. Perinatal autoimmunity in offspring of diabetic parents. The German Multicenter BABY-DIAB study: detection of humoral immune responses to islet antigens in early childhood. Diabetes. 1996; 45 967-973
- 38 Barker JM, Goehrig SH, Barriga K, Hoffman M, Slover R, Eisenbarth GS, Norris JM, Klingensmith GJ, Rewers M. Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care. 2004; 6 1399-1404
- 39 Stanley HM, Norris JM, Barriga K, Hoffman M, Yu L, Miao D, Erlich HA, Eisenbarth GS, Rewers M. Is presence of islet autoantibodies at birth associated with development of persistent autoimmunity? The Diabetes Autoimmunity Study in the Young (DAISY). Diabetes Care. 2004; 2 497-502
- 40 Hämäläinen A-M, Ronkainen MS, Åkerblom HK, Knip M. Postnatal elimination of transplacentally-acquired disease-associated antibodies in infants born to families with type 1 diabetes. J Clin Endocrinol Metab. 2000; 85 4249-4253
- 41 Naserke HE, Bonifacio E, Ziegler AG. Prevalence, characteristics, and diabetes risk associated with transient maternally-acquired islet antibodies and persistent islet antibodies in offspring of parents with type 1 diabetes. J Clin Endocrinol Metab. 2001; 86 4826-4633
- 42 Ziegler AG, Hillebrand B, Rabl W, Mayrhofer M, Hummel M, Mollenhauer U, Vordemann J, Lenz A, Standl E. On the appearance of islet-associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia. 1993; 36 402-408
- 43 Martikainen A, Saukkonen T, Kulmala PK, Reijonen H, Ilonen J, Teramo K, Koskela P, Knip M, Åkerblom HK. Disease-associated antibodies in offspring of mothers with IDDM. Diabetes. 1996; 45 1706-1710
- 44 Daw K, Powers AC. Two distinct glutamic acid decarboxylase auto-antibody specificities in IDDM target difference epitopes. Diabetes. 1995; 44 216-220
- 45 Falorni A, Gambelunghe G, Forini F, Kassi G, Cosentino A, Candeloro P, Bolli GB, Brunetti P, Calcinaro F. Autoantibody recognition of COOH-terminal epitopes of GAD65 marks the risk for insulin requirement in adult-onset diabetes mellitus. J Clin Endocrinol Metab. 2000; 85 309-316
- 46 Richter W, Shi Y, Bækkeskov S. Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc Natl Acad Sci USA. 1993; 90 2832-2836
-
47 Soothill JF, Hayward AR, Wood CBS. Development of immunity mechanism. In:
Pediatric Immunology . Blackwell, Oxford 1981: 48-55 - 48 Palfi M, Selbing A. Placental transport of immunoglobulin G. Am J Reprod Immunol. 1998; 39 24-26
- 49 Simister NE. Placental transport of immunoglobulin G. Vaccine. 2003; 21 3365-3369
- 50 Merbi Y, Zucker-Toledano M, Quintana JF, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007; 117 712-718
- 51 Bonifacio E, Lampasona V, Bernasconi L, Ziegler AG. Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes. Diabetes. 2000; 49 202-208
- 52 Hampe CS, Hammerle LP, Bekris L, Örtqvist E, Persson B, Lernmark Å. Stable GAD65 autoantibody epitope patterns in type 1 diabetes children five years after onset. J Autoimmun. 2002; 18 49-53
Correspondence
M. ElfvingMD
Department of Clinical Sciences
Pediatric Unit
Lund University Hospital
Lund University
22185 Lund
Sweden
Phone: +46/46/17 10 00
Fax: +46/46/17 80 35
Email: maria.elfving@skane.se