Abstract
Gating deficits and hallucinatory sensations are prominent symptoms of schizophrenia. Comparing these abnormalities with the failure modes of network models is an interesting way to explore how they arise. We present a network model that can both propagate and gate signals. The model exhibits effects reminiscent of clinically observed pathologies when the balance between excitation and inhibition that it requires is not properly maintained.
References
1 Abeles M. Corticonics: neural circuits of the cerebral cortex . Cambridge University Press: Cambridge 1991: 28
2
Aertsen A, Diesmann M, Gewaltig MO.
Propagation of synchronous spiking activity in feedfor-ward neural networks.
J Physiol Paris.
1996;
90
243-247
3
Amit DJ, Brunel N.
Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.
Cereb Cortex.
1997;
7
237-252
4
Anderson CW, Essen DC Van.
Shifter circuits: a computational strategy for dynamic aspects of visual processing.
Proc Natl Acad Sci USA.
1987;
84
6297-6301
5
Brunel N.
Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons.
J Physiol Paris.
2000;
94
445-463
6
Carlsson A.
The neurochemical circuitry of schizophrenia.
Pharmacopsychiatry.
2006;
39
S10-S4
7
Destexhe A, Contreras D.
Neuronal computations with stochastic network states.
Science.
2006;
314
85-90
8
Diesmann M, Gewaltig MO, Aertsen A.
Stable propagation of synchronous spiking in cortical neural networks.
Nature.
1999;
402
529-533
9
Germuska M, Saha S, Fiala J, Barbas H.
Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates.
Cereb Cortex.
2006;
16
865-875
10
Haider B, Duque A, Hasenstaub AR, MacCormick DA.
Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition.
J Neurosci.
2006;
26
4535-4545
11
Jackson ME, Homayoun H, Moghaddam B.
NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
Proc Natl Acad Sci USA.
2004;
101
8467-8472
12
Kumar A, Schrader S, Aertsen A, Rotter S.
The High-Conductance State of Cortical Networks.
Neural Computat.
2007;
, (in press)
13
Lewis DA, Gonzalez-Burgos G.
Patho-physiologically based treatment interventions in schizophrenia.
Nat Med.
2006;
12
1016-1022
14
Lewis DA, Hashimoto T, Volk DW.
Cortical inhibitory neurons and schizophrenia.
Nat Rev Neurosci.
2006;
6
312-324
15
Moore H, West AR, Grace AA.
The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia.
Biol Psychiatry.
1999;
46
40-55
16
Morrison P, Murray R.
M.
Primer: Schizophrenia. Curr Biol.
2005;
15
((24))
980-984
17
Olshausen BA, Anderson CH, Essen DC Van.
A neurobiological model of visual attention and invariant pattern recognition based on dynamical routing of information.
J Neurosci.
1993;
13
4700-4719
18
Seeman P.
Dopamine receptors and the dopamine hypothesis of schizophrenia.
Synapse.
1987;
1
133-152
19
Shadlen MN, Newsome WT.
Noise, neural codes and cortical organization.
Curr Opin Neu-robiol.
1994;
4
569-579
20
Shu Y, Hasenstaub A, MacCormick DA.
Turning on and off recurrent balanced cortical activity.
Nature.
2003;
423
288-293
21
Tamminga C.
Schizophrenia and glutamatergic transmission.
Crit Rev Neurobiol.
1998;
12
21-36
22
Troyer TW, Miller KD.
Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.
Neural Comput.
1997;
9
971-983
23
Rossum MC Van, Turrigiano GG, Nelson SB.
Fast propagation of firing rates through layered networks of noisy neurons.
J Neurosci.
2002;
22
1956-1966
24
Vreeswijk C van, Sompolinsky H.
Chaos in neuronal networks with balanced excitatory and inhibitory activity.
Science.
1996;
274
1724-1726
25
Vogels TP, Rajan K, Abbott LF.
Neural Networks Dynamics.
Ann Rev Neurosci.
2005;
28
357-376
26
Vogels TP, Abbott LF.
Signal propagation and logic gating in networks of Integrate-and-Fire Neurons.
J Neurosci.
2005;
25
10786-10795
27
Vogels TP, Abbott LF.
Signal gating and detailed balance in neuronal networks.
, submitted
2007;
28
Wang XJ.
Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.
Pharmacopsychiatry.
2006;
39
S80-S87
29
Winterer G.
Cortical microcircuits in schizophrenia-the dopamine hypothesis revisited.
Pharmacopsychiatry.
2006;
39
S68-S71
Correspondence
T.P. Vogels
Department of Physiology and Cellular Biophysics
Center for Neurobiology and Behavior
Columbia University College of Physicians and Surgeons
10032-2695 New York
USA
Phone: 001/646/330 46 09
Fax: 001/212/543 50 10
Email: timvogels@columbia.edu