Subscribe to RSS
DOI: 10.1055/s-2007-992130
© Georg Thieme Verlag KG Stuttgart · New York
Gating Deficits in Model Networks: A Path to Schizophrenia?
Publication History
Publication Date:
17 December 2007 (online)

Abstract
Gating deficits and hallucinatory sensations are prominent symptoms of schizophrenia. Comparing these abnormalities with the failure modes of network models is an interesting way to explore how they arise. We present a network model that can both propagate and gate signals. The model exhibits effects reminiscent of clinically observed pathologies when the balance between excitation and inhibition that it requires is not properly maintained.
References
- 1 Abeles M.
Corticonics: neural circuits of the cerebral cortex . Cambridge University Press: Cambridge 1991: 28Reference Ris Wihthout Link - 2
Aertsen A, Diesmann M, Gewaltig MO.
Propagation of synchronous spiking activity in feedfor-ward neural networks.
J Physiol Paris.
1996;
90
243-247
Reference Ris Wihthout Link
- 3
Amit DJ, Brunel N.
Model of global spontaneous activity and local structured activity during delay periods
in the cerebral cortex.
Cereb Cortex.
1997;
7
237-252
Reference Ris Wihthout Link
- 4
Anderson CW, Essen DC Van.
Shifter circuits: a computational strategy for dynamic aspects of visual processing.
Proc Natl Acad Sci USA.
1987;
84
6297-6301
Reference Ris Wihthout Link
- 5
Brunel N.
Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons.
J Physiol Paris.
2000;
94
445-463
Reference Ris Wihthout Link
- 6
Carlsson A.
The neurochemical circuitry of schizophrenia.
Pharmacopsychiatry.
2006;
39
S10-S4
Reference Ris Wihthout Link
- 7
Destexhe A, Contreras D.
Neuronal computations with stochastic network states.
Science.
2006;
314
85-90
Reference Ris Wihthout Link
- 8
Diesmann M, Gewaltig MO, Aertsen A.
Stable propagation of synchronous spiking in cortical neural networks.
Nature.
1999;
402
529-533
Reference Ris Wihthout Link
- 9
Germuska M, Saha S, Fiala J, Barbas H.
Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates.
Cereb Cortex.
2006;
16
865-875
Reference Ris Wihthout Link
- 10
Haider B, Duque A, Hasenstaub AR, MacCormick DA.
Neocortical network activity in vivo is generated through a dynamic balance of excitation
and inhibition.
J Neurosci.
2006;
26
4535-4545
Reference Ris Wihthout Link
- 11
Jackson ME, Homayoun H, Moghaddam B.
NMDA receptor hypofunction produces concomitant firing rate potentiation and burst
activity reduction in the prefrontal cortex.
Proc Natl Acad Sci USA.
2004;
101
8467-8472
Reference Ris Wihthout Link
- 12
Kumar A, Schrader S, Aertsen A, Rotter S.
The High-Conductance State of Cortical Networks.
Neural Computat.
2007;
, (in press)
Reference Ris Wihthout Link
- 13
Lewis DA, Gonzalez-Burgos G.
Patho-physiologically based treatment interventions in schizophrenia.
Nat Med.
2006;
12
1016-1022
Reference Ris Wihthout Link
- 14
Lewis DA, Hashimoto T, Volk DW.
Cortical inhibitory neurons and schizophrenia.
Nat Rev Neurosci.
2006;
6
312-324
Reference Ris Wihthout Link
- 15
Moore H, West AR, Grace AA.
The regulation of forebrain dopamine transmission: relevance to the pathophysiology
and psychopathology of schizophrenia.
Biol Psychiatry.
1999;
46
40-55
Reference Ris Wihthout Link
- 16
Morrison P, Murray R.
M.
Primer: Schizophrenia. Curr Biol.
2005;
15
((24))
980-984
Reference Ris Wihthout Link
- 17
Olshausen BA, Anderson CH, Essen DC Van.
A neurobiological model of visual attention and invariant pattern recognition based
on dynamical routing of information.
J Neurosci.
1993;
13
4700-4719
Reference Ris Wihthout Link
- 18
Seeman P.
Dopamine receptors and the dopamine hypothesis of schizophrenia.
Synapse.
1987;
1
133-152
Reference Ris Wihthout Link
- 19
Shadlen MN, Newsome WT.
Noise, neural codes and cortical organization.
Curr Opin Neu-robiol.
1994;
4
569-579
Reference Ris Wihthout Link
- 20
Shu Y, Hasenstaub A, MacCormick DA.
Turning on and off recurrent balanced cortical activity.
Nature.
2003;
423
288-293
Reference Ris Wihthout Link
- 21
Tamminga C.
Schizophrenia and glutamatergic transmission.
Crit Rev Neurobiol.
1998;
12
21-36
Reference Ris Wihthout Link
- 22
Troyer TW, Miller KD.
Physiological gain leads to high ISI variability in a simple model of a cortical regular
spiking cell.
Neural Comput.
1997;
9
971-983
Reference Ris Wihthout Link
- 23
Rossum MC Van, Turrigiano GG, Nelson SB.
Fast propagation of firing rates through layered networks of noisy neurons.
J Neurosci.
2002;
22
1956-1966
Reference Ris Wihthout Link
- 24
Vreeswijk C van, Sompolinsky H.
Chaos in neuronal networks with balanced excitatory and inhibitory activity.
Science.
1996;
274
1724-1726
Reference Ris Wihthout Link
- 25
Vogels TP, Rajan K, Abbott LF.
Neural Networks Dynamics.
Ann Rev Neurosci.
2005;
28
357-376
Reference Ris Wihthout Link
- 26
Vogels TP, Abbott LF.
Signal propagation and logic gating in networks of Integrate-and-Fire Neurons.
J Neurosci.
2005;
25
10786-10795
Reference Ris Wihthout Link
- 27
Vogels TP, Abbott LF.
Signal gating and detailed balance in neuronal networks.
, submitted
2007;
Reference Ris Wihthout Link
- 28
Wang XJ.
Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.
Pharmacopsychiatry.
2006;
39
S80-S87
Reference Ris Wihthout Link
- 29
Winterer G.
Cortical microcircuits in schizophrenia-the dopamine hypothesis revisited.
Pharmacopsychiatry.
2006;
39
S68-S71
Reference Ris Wihthout Link
Correspondence
T.P. Vogels
Department of Physiology and Cellular Biophysics
Center for Neurobiology and Behavior
Columbia University College of Physicians and Surgeons
10032-2695 New York
USA
Phone: 001/646/330 46 09
Fax: 001/212/543 50 10
Email: timvogels@columbia.edu