Pharmacopsychiatry 2007; 40: S73-S77
DOI: 10.1055/s-2007-992130
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Gating Deficits in Model Networks: A Path to Schizophrenia?

T. P. Vogels 1 , 2 , L. F. Abbott 1
  • 1Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, USA
  • 2Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, USA
Further Information

Publication History

Publication Date:
17 December 2007 (online)

Abstract

Gating deficits and hallucinatory sensations are prominent symptoms of schizophrenia. Comparing these abnormalities with the failure modes of network models is an interesting way to explore how they arise. We present a network model that can both propagate and gate signals. The model exhibits effects reminiscent of clinically observed pathologies when the balance between excitation and inhibition that it requires is not properly maintained.

References

  • 1 Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge University Press: Cambridge 1991: 28
  • 2 Aertsen A, Diesmann M, Gewaltig MO. Propagation of synchronous spiking activity in feedfor-ward neural networks.  J Physiol Paris. 1996;  90 243-247
  • 3 Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.  Cereb Cortex. 1997;  7 237-252
  • 4 Anderson CW, Essen DC Van. Shifter circuits: a computational strategy for dynamic aspects of visual processing.  Proc Natl Acad Sci USA. 1987;  84 6297-6301
  • 5 Brunel N. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons.  J Physiol Paris. 2000;  94 445-463
  • 6 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  39 S10-S4
  • 7 Destexhe A, Contreras D. Neuronal computations with stochastic network states.  Science. 2006;  314 85-90
  • 8 Diesmann M, Gewaltig MO, Aertsen A. Stable propagation of synchronous spiking in cortical neural networks.  Nature. 1999;  402 529-533
  • 9 Germuska M, Saha S, Fiala J, Barbas H. Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates.  Cereb Cortex. 2006;  16 865-875
  • 10 Haider B, Duque A, Hasenstaub AR, MacCormick DA. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition.  J Neurosci. 2006;  26 4535-4545
  • 11 Jackson ME, Homayoun H, Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.  Proc Natl Acad Sci USA. 2004;  101 8467-8472
  • 12 Kumar A, Schrader S, Aertsen A, Rotter S. The High-Conductance State of Cortical Networks.  Neural Computat. 2007;  , (in press)
  • 13 Lewis DA, Gonzalez-Burgos G. Patho-physiologically based treatment interventions in schizophrenia.  Nat Med. 2006;  12 1016-1022
  • 14 Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia.  Nat Rev Neurosci. 2006;  6 312-324
  • 15 Moore H, West AR, Grace AA. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia.  Biol Psychiatry. 1999;  46 40-55
  • 16 Morrison P, Murray R. M.  Primer: Schizophrenia. Curr Biol. 2005;  15 ((24)) 980-984
  • 17 Olshausen BA, Anderson CH, Essen DC Van. A neurobiological model of visual attention and invariant pattern recognition based on dynamical routing of information.  J Neurosci. 1993;  13 4700-4719
  • 18 Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia.  Synapse. 1987;  1 133-152
  • 19 Shadlen MN, Newsome WT. Noise, neural codes and cortical organization.  Curr Opin Neu-robiol. 1994;  4 569-579
  • 20 Shu Y, Hasenstaub A, MacCormick DA. Turning on and off recurrent balanced cortical activity.  Nature. 2003;  423 288-293
  • 21 Tamminga C. Schizophrenia and glutamatergic transmission.  Crit Rev Neurobiol. 1998;  12 21-36
  • 22 Troyer TW, Miller KD. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.  Neural Comput. 1997;  9 971-983
  • 23 Rossum MC Van, Turrigiano GG, Nelson SB. Fast propagation of firing rates through layered networks of noisy neurons.  J Neurosci. 2002;  22 1956-1966
  • 24 Vreeswijk C van, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity.  Science. 1996;  274 1724-1726
  • 25 Vogels TP, Rajan K, Abbott LF. Neural Networks Dynamics.  Ann Rev Neurosci. 2005;  28 357-376
  • 26 Vogels TP, Abbott LF. Signal propagation and logic gating in networks of Integrate-and-Fire Neurons.  J Neurosci. 2005;  25 10786-10795
  • 27 Vogels TP, Abbott LF. Signal gating and detailed balance in neuronal networks. , submitted 2007; 
  • 28 Wang XJ. Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.  Pharmacopsychiatry. 2006;  39 S80-S87
  • 29 Winterer G. Cortical microcircuits in schizophrenia-the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 S68-S71

Correspondence

T.P. Vogels

Department of Physiology and Cellular Biophysics

Center for Neurobiology and Behavior

Columbia University College of Physicians and Surgeons

10032-2695 New York

USA

Phone: 001/646/330 46 09

Fax: 001/212/543 50 10

Email: timvogels@columbia.edu