Subscribe to RSS
DOI: 10.1055/s-2007-992133
© Georg Thieme Verlag KG Stuttgart · New York
Dopamine and Serotonin Interactions in the Prefrontal Cortex: Insights on Antipsychotic Drugs and Their Mechanism of Action
Publication History
Publication Date:
17 December 2007 (online)
Abstract
Diminished activity within the prefrontal cortex (PFC) has been associated with many of the cognitive deficits that are observed in schizophrenia. It has been hypothesized that antipsychotic drugs (APDs) used to treat schizophrenia restore normal activity by antagonizing the dopamine (DA) D2 receptor, which is also known to modulate key ionic currents in the PFC. However, the hypothesis that an under-active cortical DA system is responsible for schizophrenic symptoms has been challenged by evidence that newer atypical APDs are weak antagonists at the D2 receptor but potent antagonists at the serotonin (5-HT) 2A receptor [57]. This review examines how DA and 5-HT modulate cortical activity and how they may interact in ways that are relevant to schizophrenia. It is concluded that although D2 receptor antagonism remains a critical factor in restoring impaired cortical activity, effects on 5-HT receptors may act in a synergistic manner on NMDA and GABA currents to potentiate antipsychotic actions in the PFC.
References
- 1 Aghajanian GK, Marek GJ. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology. 1997; 36 ((4-5)) 589-599
- 2 Aghajanian GK, Marek GJ. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 1999; 825 ((1-2)) 161-171
- 3 Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991; 40 ((2)) 399-412
- 4 Arvanov VL, Liang X, Magro P, Roberts R, Wang RY. A pre- and postsynaptic modulatory action of 5-HT and the 5-HT2A, 2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex. Eur J Neurosci. 1999; 11 ((8)) 2917-2934
- 5 Assie MB, Ravailhe V, Faucillon V, Newman-Tancredi A. Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther. 2005; 315 ((1)) 265-272
- 6 Auclair A, Blanc G, Glowinski J, Tassin JP. Role of serotonin 2A receptors in the D-amphetamine-induced release of dopamine: comparison with previous data on alpha1b-adrenergic receptors. J Neurochem. 2004; 91 ((2)) 318-326
- 7 Beique JC, Chapin-Penick EM, Mladenovic L, Andrade R. Serotonergic facilitation of synaptic activity in the developing rat prefrontal cortex. J Physiol. 2004; 556 ((Pt 3)) 739-754
- 8 Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA. 2007; 104 ((23)) 9870-9875
- 9 Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F. The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem. 2005; 95 ((6)) 1597-1607
- 10 Burnet PWJ, Chen CPL-H, MacGowan S, Franklin M, Harrison PJ. The effects of clozapine and haloperidol on serotonin -1A, -2A, and -2C receptor gene expression and serotonin metabolism in the rat forebrain. Neuroscience. 1996; 73 531-540
- 11 Cai X, Flores-Hernandez J, Feng J, Yan Z. Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signalling in rat prefrontal cortical pyramidal neurons. J Physiol. 2002a; 540 ((Pt 3)) 743-759
- 12 Cai X, Gu Z, Zhong P, Ren Y, Yan Z. Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons. J Biol Chem. 2002b; 277 ((39)) 36553-36562
- 13 Carlsson A. The neurochemical circuitry of schizophrenia. Pharmacopsychiatry. 2006; 39 (Suppl 1) S10-S14
- 14 Carr DB, Cooper DC, Ulrich SL, Spruston N, Surmeier DJ. Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci. 2002; 22 ((16)) 6846-6855
- 15 Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA. 2004; 101 ((8)) 2596-2600
- 16 Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci. 2003; 1003 318-327
- 17 Devoto P, Flore G, Pani L, Gessa GL. Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiatry. 2001; 6 657-664
- 18 Diaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F. Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci. 2005; 25 ((47)) 10831-10843
- 19 Durstewitz D. A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry. 2006; 39 (Suppl 1) S72-S75
- 20 Durstewitz D, Seamans JK. The computational role of dopamine D1 receptors in working memory. Neural Netw. 2002; 15 561-572
- 21 Fischette CT, Nock B, Renner K. Effects of 5,7-dihydroxytryptamine on serotonin1 and serotonin2 receptors throughout the rat central nervous system using quantitative autoradiography. Brain Res. 1987; 421 ((1-2)) 263-279
- 22 Garris PA, Ciolkowski EL, Pastore P, RM. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci. 1994; 14 6084-6093
- 23 Garris PA, Collins LB, Jones SR, Wightman RM. Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J Neurochem. 1993; 61 637-647
- 24 Garris PA, Wightman RM. Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci. 1994; 14 442-450
- 25 Gellman RL, Aghajanian GK. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 1993; 600 ((1)) 63-73
- 26 Gobert A, Millan MJ. Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology. 1999; 38 ((2)) 315-317
- 27 Goldman-Rakic PS, Muly 3rd EC, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Rev. 2000; 31 ((2-3)) 295-301
- 28 Gonzalez-Burgos G, Kroener S, Seamans JK, Lewis DA, Barrionuevo G. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. J Neurophysiol. 2005; 94 ((6)) 4168-4177
- 29 Gonzalez-Islas C, Hablitz JJ. Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci. 2003; 23 867-875
- 30 Gorelova N, Seamans JK, Yang CR. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol. 2002; 88 3150-3166
- 31 Gorelova NA, Yang CR. Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol. 2000; 84 75-87
- 32 Gu Z, Jiang Q, Yan Z. RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia. Mol Pharmacol. 2007; 71 ((4)) 1030-1039
- 33 Gulledge AT, Jaffe DB. Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. J Neurophysiol. 2001; 86 586-595
- 34 Henze DA, Gonzalez-Burgos GR, Urban NN, Lewis DA, Barrionuevo G. Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J Neurophysiol. 2000; 84 2799-2809
- 35 Hernandez L, Hoebel BG. Chronic clozapine selectively decreases prefrontal cortex dopamine as shown by simultaneous cortical, accumbens, and striatal microdialysis in freely moving rats. Pharmacol Biochem Behav. 1995; 52 581-589
- 36 Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH. Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res. 1998; 779 214-225
- 37 Huang YY, Kandel ER. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci USA. 1995; 92 2446-2450
- 38 Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem. 2001; 76 ((5)) 1521-1531
- 39 Ichikawa J, Kuroki T, Dai J, Meltzer HY. Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. Eur J Pharmacol. 1998; 351 ((2)) 163-171
- 40 Iyer RN, Bradberry CW. Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J Pharmacol Exp Ther. 1996; 277 ((1)) 40-47
- 41 Izaki Y, Hori K, Nomura, M. Dopamine and acetylcholine elevation on lever-press acquisition in rat prefrontal cortex. Neurosci Lett. 1998; 258 33-36
- 42 Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerbral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA. 1998; 95 735-740
- 43 Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999; 20 ((3)) 201-225
- 44 Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27 ((7)) 1081-1090
- 45 Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001; 158 ((3)) 360-369
- 46 Keefe RS, Sweeney JA, Gu H, Hamer RM, Perkins DO, MacEvoy JP, Lieberman JA. Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry. 2007; 164 ((7)) 1061-1071
- 47 Krystal JH, Belger AD, Douza C, Anand A, Charney DS, Aghajanian GK. et al . Therapeutic implications of the hyperglutamatergic effects of NMDA antagonists. Neuropsychopharmacology. 1999; 22 A143-A157
- 48 Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther. 1999; 288 ((2)) 774-781
- 49 Lambe EK, Aghajanian GK. The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci. 2001; 21 ((24)) 9955-9963
- 50 Lambe EK, Goldman-Rakic PS, Aghajanian GK. Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb Cortex. 2000; 10 ((10)) 974-980
- 51 Lucas G, Spampinato U. Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem. 2000; 74 ((2)) 693-701
- 52 Marek GJ, Aghajanian GK. 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by μ-opiate receptor activation. Neuroscience. 1998; 86 ((2)) 485-497
- 53 Marek GJ, Aghajanian GK. 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol. 1999; 367 ((2-3)) 197-206
- 54 Marek GJ, Wright RA, Gewirtz JC, Schoepp DD. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience. 2001; 105 ((2)) 379-392
- 55 Matsubara S, Meltzer HY. Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat cerebral cortex. Life Sci. 1989; 45 1397-1406
- 56 Matsumoto M, Togashi H, Mori K, Ueno K, Miyamoto A, Yoshioka M. Characterization of endogenous serotonin-mediated regulation of dopamine release in the rat prefrontal cortex. Eur J Pharmacol. 1999; 383 ((1)) 39-48
- 57 Meltzer HY. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacol (Berl). 1989; 99 (Suppl 1) S18-S27
- 58 Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27 ((7)) 1159-1172
- 59 Millan MJ. Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther. 2000; 295 ((3)) 853-861
- 60 Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Molecular Psychiatry. 2005; 10 79-104
- 61 Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997; 17 ((8)) 2921-2927
- 62 Mori K, Nagao M, Yamashita H, Morinobu S, Yamawaki S. Effect of switching to atypical antipsychotics on memory in patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28 ((4)) 659-665
- 63 Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002; 22 389-395
- 64 Nichols DE. Hallucinogens. Pharmacol Ther. 2004; 101 ((2)) 131-181
- 65 O'Dell SJ, Hoste GJ La, Widmark CB, Potkin SG, Marshall JF. Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serotonin receptors in rat brain. Synapse. 1990; 6 146-153
- 66 Olney JW, Farber NB. NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology. 1995; 13 ((4)) 335-345
- 67 Pazos A, Cortes R, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain II. Serotonin-2 receptors. Brain Res. 1985; 346 ((2)) 231-249
- 68 Pehek EA, MacFarlane HG, Maguschak K, Price B, Pluto CP. M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res. 2001; 888 ((1)) 51-59
- 69 Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS. Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology. 2006; 31 ((2)) 265-277
- 70 Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH. 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry. 2000; 48 ((3)) 229-237
- 71 Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S. Breakthrough” dopamine supersensitivity during ongoing antipsychotic treat-ment leads to treatment failure over time. J Neurosci. 2007; 27 ((11)) 2979-2986
- 72 Schmidt CJ, Fadayel GM. The selective 5-HT2A receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol. 1995; 273 ((3)) 273-279
- 73 Seeman P. The absolute density of neurotransmitter receptors in the brain. Example for dopamine receptors. J Pharmacol Methods. 1987; 17 ((4)) 347-360
- 74 Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002; 47 ((1)) 27-38
- 75 Seeman P. An update of fast-off dopamine D2 atypical antipsychotics. Am J Psychiatry. 2005; 162 ((10)) 1984-1985
- 76 Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED. et al . Human brain D1 and D2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's, and Huntington's diseases. Neuropsychopharmacology. 1987; 1 ((1)) 5-15
- 77 Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, MacKnight GS. et al . Psychosis pathways converge via D2high dopamine receptors. Synapse. 2006; 60 ((4)) 319-346
- 78 Seeman P, Tallerico T. Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999; 156 ((6)) 876-884
- 79 Seamans JK, Durstewitz D, Christie B, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA. 2001a; 98 301-306
- 80 Seamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci. 2001b; 21 3628-3638
- 81 Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004; 74 ((1)) 1-58
- 82 Sesack SR, Hawrylak VA, Guido MA, Levey AI. Cellular and subcellular localization of the dopamine transporter in rat cortex. Adv Pharmacol. 1998; 42 171-174
- 83 Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992; 320 ((2)) 145-160
- 84 Sheldon PW, Aghajanian GK. Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2-activated interneuron. Brain Res. 1990; 506 ((1)) 62-69
- 85 Sheldon PW, Aghajanian GK. Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse. 1991; 9 ((3)) 208-218
- 86 Shoblock JR, Maisonneuve IM, Glick SD. Differences between D-methamphetamine and D-amphetamine in rats: working memory, tolerance, and extinction. Psychopharmacology. 2003; 170 150-156
- 87 Tanaka E, North RA. Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol. 1993; 69 ((5)) 1749-1757
- 88 Trantham-Davidson H, Kroner S, Seamans JK. Dopamine modulation of prefrontal cortex interneurons occurs independently of DARPP-32. Cereb Cortex. 2007; , in press
- 89 Trantham-Davidson H, Neely LC, Lavin A, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci. 2004; 24 ((47)) 10652-10659
- 90 Tseng KY, O'Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci. 2004; 24 ((22)) 5131-5139
- 91 Wang XJ. Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia. Pharmacopsychiatry. 2006; 39 (Suppl 1) S80-S87
- 92 Westerink BH, Kawahara Y, Boer P De, Geels C, Vries JB De, Wikstrom HV. et al . Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol. 2001; 412 ((2)) 127-138
- 93 Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse. 1997; 27 32-79
- 94 Wilmot CA, Szczepanik AM. Effects of acute and chronic treatment with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res. 1989; 487 288-298
- 95 Winterer G. Cortical microcircuits in schizophrenia-the dopamine hypothesis revisited. Pharmacopsychiatry. 2006; 39 (Suppl 1) S68-S71
- 96 Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 2004; 27 ((11)) 683-690
- 97 Xu TJ, Pandey SC. Cellular localization of serotonin2A (5HT2A) receptors in the rat brain. Brain Res Bull. 2000; 51 499-505
- 98 Yang CR, Seamans JS. Dopamine D1 receptor actions in layer V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci. 1996; 16 1922-1935
- 99 Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z. Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci. 2005; 25 ((23)) 5488-5501
- 100 Zahorodna A, Bobula B, Grzegorzewska M, Tokarski K, Hess G. The influence of repeated administration of clozapine and haloperidol on the effects of the activation of 5-HT(1A), 5-HT(2) and 5-HT(4) receptors in rat frontal cortex. J Physiol Pharmacol. 2004; 55 ((2)) 371-379
- 101 Zheng P, Zhang XX, Bunney BS, Shi WX. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience. 1999; 91 ((2)) 527-535
- 102 Zhong P, Yan Z. Chronic antidepressant treatment alters serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. Neuroscience. 2004; 129 ((1)) 65-73
- 103 Zhou FM, Hablitz JJ. Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol. 1999; 82 ((6)) 2989-2999
Correspondence
N.C. Di PietroPhD
Brain Research Center
Department of Psychiatry
University of British Columbia
Koerner Pavilion
UBC Hospital
2211 Wesbrook Mall
Room F-241
Vancouver
BC. V6T 2R5
Canada
Email: ndipietro@gmail.com