Subscribe to RSS
DOI: 10.1055/s-2007-992370
Evolution, Development and Personal Experience in Studies of the Allyl Cyanate-to-Isocyanate Rearrangement
Publication History
Publication Date:
12 November 2007 (online)
Abstract
Evolution and development of the synthesis and rearrangement of allyl cyanate is described. Allyl cyanate-to-isocyanate rearrangement is a concerted [3.3]-sigmatropic process involving highly selective [1,3]-chirality transfer to the newly formed asymmetric center bearing nitrogen. The usefulness of this rearrangement is manifested by the synthesis of natural products containing nitrogen-substituted quaternary carbon atoms.
1 Background
2 Evolution of the Allyl Cyanate-to-Isocyanate Rearrangement. A Personal History
3 The Stereochemistry and Mechanism of the Allyl Cyanate-to-Isocyanate Rearrangement
4 Synthesis of Natural Products Containing Nitrogen-Substituted Quaternary Carbon Centers
5 Coda
Key words
allyl cyanate - isocyanate - rearrangement - natural product synthesis
-
1a
Billeter O. Helv. Chim. Acta. 1925, 8: 337 -
1b For a comprehensive discussion of the rearrangement of allyl thiocyanates, see:
Giles DE. In The Chemistry of Cyanates and Their Thio Derivatives Part 1:Patai S. Wiley-Interscience; New York: 1977. Chap. 12. p.381 - 2
Smith PAS.Emerson DW. J. Am. Chem. Soc. 1960, 82: 3076 - 3
Leffler MT. Org. Synth., Coll. Vol. II 1943, 24 - 4
Cloez R. C. R. Acad. Sci. Paris 1857, 44: 482 -
5a
Jensen KA.Holm A. In The Chemistry of Cyanates and Their Thio Derivatives Part 1:Patai S. Wiley-Interscience; New York: 1977. Chap. 16. p.569 -
5b
Grigat E.Pütter R. Angew. Chem., Int. Ed. Engl. 1967, 6: 206 -
5c
Grigat E. Angew. Chem., Int. Ed. Engl. 1972, 11: 949 -
5d
Grashey R. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.225 - 6
Stroh R.Gerber H. Angew. Chem. 1960, 72: 1000 -
7a
Grigat E.Pütter R. Chem. Ber. 1964, 97: 3012 -
7b
Martin D. Org. Synth., Coll. Vol. VII 1990, 435 - 8
Jensen KA.Holm A. Acta Chem. Scand. 1964, 18: 826 -
9a
Martin D. Angew. Chem., Int. Ed. Engl. 1964, 3: 311 -
9b
Martin D. Chem. Ber. 1964, 97: 2689 - 10
Kauer JC.Henderson WW. J. Am. Chem. Soc. 1964, 86: 4732 - 11
Christophersen C.Holm A. Acta Chem. Scand. 1970, 24: 1512 - 12
Kitagawa I. Kagaku Zokan 1987, 111: 133 -
13a
Kitagawa I.Yoshioka N.Kamba C.Yoshikawa M.Hamamoto Y. Chem. Pharm. Bull. 1987, 35: 928 -
13b
Sullivan BW.Faulkner DJ.Okamoto KT.Chen MHM.Clardy J. J. Org. Chem. 1986, 51: 5143 -
13c
Gulavita NK.de Silva ED.Hagadone MR.Karuso P.Scheuer PJ.VanDuyne GD.Clardy J. J. Org. Chem. 1986, 51: 5136 - 14 In a study paralleling our exploration of the synthesis of aminobisabolenes, we probed the synthesis of the sulfur-containing natural product agelasidine A using an allyl xanthate-to-dithiocarbonate rearrangement; see:
Ichikawa Y. Tetrahedron Lett. 1988, 29: 4957 -
15a
Overman LE. J. Am. Chem. Soc. 1974, 96: 597 -
15b
Overman LE. J. Am. Chem. Soc. 1974, 98: 2901 -
15c
Clizbe LA.Overman LE. Org. Synth., Coll. Vol. VI 1988, 507 - 16
Overman LE.Kakimoto M. J. Org. Chem. 1978, 43: 4564 - 17
Ichikawa Y. Chem. Lett. 1990, 1347 -
19a
Ichikawa Y. Synlett 1991, 238 - To the best of our knowledge, this protocol is the first example of the synthesis of cyanates from carbamates by dehydration. Later, I found a report of an unsuccessful synthesis of cyanates by dehydration of carbamates using P2O5 and DCC; see:
-
19b
Jensen KA.Holm A. Acta Chem. Scand. 1964, 18: 2417 - 20
Baldwin JE.O’Neil IA. Synlett 1990, 603 - 21
Appel R.Kleinstuck R.Ziehn K. Angew. Chem., Int. Ed. Engl. 1971, 10: 132 -
22a
Ichikawa Y. J. Chem. Soc., Perkin Trans. 1 1992, 2135 -
22b
O’Neil IA. In Comprehensive Organic Functional Group Transformations Vol. 3:Katritzky A.Meth-Cohn O.Ress CW. Pergamon; Oxford: 1995. p.696 - 23
Bergmann E. J. Chem. Soc. 1935, 1361 - 24
Martin D.Niclas H.-J.Habisch D. Liebigs Ann. Chem. 1969, 727: 10 - 25
Ichikawa Y.Tsuboi K.Isobe M. J. Chem. Soc., Perkin Trans. 1 1994, 2791 - 26
Kusumi T.Fukushima T.Ohtani I.Kakisawa H. Tetrahedron Lett. 1991, 32: 2939 - 27
Ichikawa Y.Yamauchi E.Isobe M. Biosci. Biotech. Biochem. 2005, 69: 939 - 28
Soai K.Ookawa A.Kaba T.Ogawa K. J. Am. Chem. Soc. 1987, 109: 7111 - 29
Banert K.Groth S. Angew. Chem., Int. Ed. Engl. 1992, 31: 866 - 30
Banert K.Melzer A. Tetrahedron Lett. 2001, 42: 6133 -
31a
Burreson BJ.Scheuer PJ. J. Chem. Soc., Chem. Commun. 1974, 1035 -
31b
Burreson BJ.Christophersen C.Scheuer PJ. Tetrahedron 1975, 31: 2015 - 32
Ichikawa Y.Yamazaki M.Isobe M. J. Chem. Soc., Perkin Trans. 1 1993, 2429 -
33a
Yamashita T.Iijima M.Nakamura H.Isshiki K.Naganawa H.Hattori S.Hamada M.Ishizuka M.Takeuchi T.Iitaka Y. J. Antibiot. 1991, 44: 557 -
33b
Hamada M.Yamamoto S.Moriguchi S.Kishino Y. J. Antibiot. 2001, 54: 349 - 34
Matsukawa Y.Isobe M.Kotsuki H.Ichikawa Y. J. Org. Chem. 2005, 70: 5339 - 35
Kapferer P.Sarabia F.Vasella A. Helv. Chim. Acta. 1999, 82: 645 - 36
Roulland E.Monneret C.Florent J.-C.Bennejean C.Renard P.Leonce S. J. Org. Chem. 2002, 67: 4399 - 37
Roy S.Spino C. Org. Lett. 2006, 8: 939
References and Notes
To a solution of commercially available nerolidol 41 (a 3:2 mixture of Z- and E-isomers 5.01 g) in hexane cooled to 0 °C was added acetonitrile (14 ml) and TFA (8.0 ml). The resulting biphasic mixture was vigorously stirred at 0 °C for 24 h and then poured into aq NaHCO3. Usual workup followed by silica gel chromatography (hexane → diethyl ether-hexane, 1:2) gave the recovered starting material (1.23 g) and crude products which were purified by recrystalli-zation (ether and hexane) to furnish aminobisabolenes (a 2:1 mixture of 37 and 38, 195 mg, 4.4% yield based upon the consumed starting materials).