Abstract
Evolution and development of the synthesis and rearrangement of allyl cyanate is described. Allyl cyanate-to-isocyanate rearrangement is a concerted [3.3]-sigmatropic process involving highly selective [1,3]-chirality transfer to the newly formed asymmetric center bearing nitrogen. The usefulness of this rearrangement is manifested by the synthesis of natural products containing nitrogen-substituted quaternary carbon atoms.
1 Background
2 Evolution of the Allyl Cyanate-to-Isocyanate Rearrangement. A Personal History
3 The Stereochemistry and Mechanism of the Allyl Cyanate-to-Isocyanate Rearrangement
4 Synthesis of Natural Products Containing Nitrogen-Substituted Quaternary Carbon Centers
5 Coda
Key words
allyl cyanate - isocyanate - rearrangement - natural product synthesis
References and Notes
1a
Billeter O.
Helv. Chim. Acta.
1925,
8:
337
1b For a comprehensive discussion of the rearrangement of allyl thiocyanates, see: Giles DE. In
The Chemistry of Cyanates and Their Thio Derivatives
Part 1:
Patai S.
Wiley-Interscience;
New York:
1977.
Chap. 12.
p.381
2
Smith PAS.
Emerson DW.
J. Am. Chem. Soc.
1960,
82:
3076
3
Leffler MT.
Org. Synth., Coll. Vol. II
1943,
24
4
Cloez R.
C. R. Acad. Sci. Paris
1857,
44:
482
5a
Jensen KA.
Holm A. In
The Chemistry of Cyanates and Their Thio Derivatives
Part 1:
Patai S.
Wiley-Interscience;
New York:
1977.
Chap. 16.
p.569
5b
Grigat E.
Pütter R.
Angew. Chem., Int. Ed. Engl.
1967,
6:
206
5c
Grigat E.
Angew. Chem., Int. Ed. Engl.
1972,
11:
949
5d
Grashey R. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.225
6
Stroh R.
Gerber H.
Angew. Chem.
1960,
72:
1000
7a
Grigat E.
Pütter R.
Chem. Ber.
1964,
97:
3012
7b
Martin D.
Org. Synth., Coll. Vol. VII
1990,
435
8
Jensen KA.
Holm A.
Acta Chem. Scand.
1964,
18:
826
9a
Martin D.
Angew. Chem., Int. Ed. Engl.
1964,
3:
311
9b
Martin D.
Chem. Ber.
1964,
97:
2689
10
Kauer JC.
Henderson WW.
J. Am. Chem. Soc.
1964,
86:
4732
11
Christophersen C.
Holm A.
Acta Chem. Scand.
1970,
24:
1512
12
Kitagawa I.
Kagaku Zokan
1987,
111:
133
13a
Kitagawa I.
Yoshioka N.
Kamba C.
Yoshikawa M.
Hamamoto Y.
Chem. Pharm. Bull.
1987,
35:
928
13b
Sullivan BW.
Faulkner DJ.
Okamoto KT.
Chen MHM.
Clardy J.
J. Org. Chem.
1986,
51:
5143
13c
Gulavita NK.
de Silva ED.
Hagadone MR.
Karuso P.
Scheuer PJ.
VanDuyne GD.
Clardy J.
J. Org. Chem.
1986,
51:
5136
14 In a study paralleling our exploration of the synthesis of aminobisabolenes, we probed the synthesis of the sulfur-containing natural product agelasidine A using an allyl xanthate-to-dithiocarbonate rearrangement; see: Ichikawa Y.
Tetrahedron Lett.
1988,
29:
4957
15a
Overman LE.
J. Am. Chem. Soc.
1974,
96:
597
15b
Overman LE.
J. Am. Chem. Soc.
1974,
98:
2901
15c
Clizbe LA.
Overman LE.
Org. Synth., Coll. Vol. VI
1988,
507
16
Overman LE.
Kakimoto M.
J. Org. Chem.
1978,
43:
4564
17
Ichikawa Y.
Chem. Lett.
1990,
1347
18 To a solution of commercially available nerolidol 41 (a 3:2 mixture of Z- and E-isomers 5.01 g) in hexane cooled to 0 °C was added acetonitrile (14 ml) and TFA (8.0 ml). The resulting biphasic mixture was vigorously stirred at 0 °C for 24 h and then poured into aq NaHCO3. Usual workup followed by silica gel chromatography (hexane → diethyl ether-hexane, 1:2) gave the recovered starting material (1.23 g) and crude products which were purified by recrystalli-zation (ether and hexane) to furnish aminobisabolenes (a 2:1 mixture of 37 and 38, 195 mg, 4.4% yield based upon the consumed starting materials).
19a
Ichikawa Y.
Synlett
1991,
238
To the best of our knowledge, this protocol is the first example of the synthesis of cyanates from carbamates by dehydration. Later, I found a report of an unsuccessful synthesis of cyanates by dehydration of carbamates using P2O5 and DCC; see:
19b
Jensen KA.
Holm A.
Acta Chem. Scand.
1964,
18:
2417
20
Baldwin JE.
O’Neil IA.
Synlett
1990,
603
21
Appel R.
Kleinstuck R.
Ziehn K.
Angew. Chem., Int. Ed. Engl.
1971,
10:
132
22a
Ichikawa Y.
J. Chem. Soc., Perkin Trans. 1
1992,
2135
22b
O’Neil IA. In Comprehensive Organic Functional Group Transformations
Vol. 3:
Katritzky A.
Meth-Cohn O.
Ress CW.
Pergamon;
Oxford:
1995.
p.696
23
Bergmann E.
J. Chem. Soc.
1935,
1361
24
Martin D.
Niclas H.-J.
Habisch D.
Liebigs Ann. Chem.
1969,
727:
10
25
Ichikawa Y.
Tsuboi K.
Isobe M.
J. Chem. Soc., Perkin Trans. 1
1994,
2791
26
Kusumi T.
Fukushima T.
Ohtani I.
Kakisawa H.
Tetrahedron Lett.
1991,
32:
2939
27
Ichikawa Y.
Yamauchi E.
Isobe M.
Biosci. Biotech. Biochem.
2005,
69:
939
28
Soai K.
Ookawa A.
Kaba T.
Ogawa K.
J. Am. Chem. Soc.
1987,
109:
7111
29
Banert K.
Groth S.
Angew. Chem., Int. Ed. Engl.
1992,
31:
866
30
Banert K.
Melzer A.
Tetrahedron Lett.
2001,
42:
6133
31a
Burreson BJ.
Scheuer PJ.
J. Chem. Soc., Chem. Commun.
1974,
1035
31b
Burreson BJ.
Christophersen C.
Scheuer PJ.
Tetrahedron
1975,
31:
2015
32
Ichikawa Y.
Yamazaki M.
Isobe M.
J. Chem. Soc., Perkin Trans. 1
1993,
2429
33a
Yamashita T.
Iijima M.
Nakamura H.
Isshiki K.
Naganawa H.
Hattori S.
Hamada M.
Ishizuka M.
Takeuchi T.
Iitaka Y.
J. Antibiot.
1991,
44:
557
33b
Hamada M.
Yamamoto S.
Moriguchi S.
Kishino Y.
J. Antibiot.
2001,
54:
349
34
Matsukawa Y.
Isobe M.
Kotsuki H.
Ichikawa Y.
J. Org. Chem.
2005,
70:
5339
35
Kapferer P.
Sarabia F.
Vasella A.
Helv. Chim. Acta.
1999,
82:
645
36
Roulland E.
Monneret C.
Florent J.-C.
Bennejean C.
Renard P.
Leonce S.
J. Org. Chem.
2002,
67:
4399
37
Roy S.
Spino C.
Org. Lett.
2006,
8:
939