Rehabilitation (Stuttg) 2008; 47(1): 56-62
DOI: 10.1055/s-2007-992790
Methoden in der Rehabilitationsforschung

© Georg Thieme Verlag KG Stuttgart · New York

Die logistische Regression - ein vielseitiges Analyseinstrument rehabilitationswissenschaftlicher Forschung

Logistic Regression - A Useful Tool in Rehabilitation Research[1] R. Muche 1
  • 1Institut für Biometrie, Universität Ulm
Further Information

Publication History

Publication Date:
04 February 2008 (online)

Zusammenfassung

Häufig werden zur Klärung von Zusammenhängen zwischen Messgrößen Regressionsanalysen benutzt. Dabei bedeutet Regression die Untersuchung, inwiefern Ausprägungen einer abhängigen Variablen sich zurückführen lassen auf die Ausprägungen einer oder mehrerer unabhängiger Variablen. Somit können Modelle aufgestellt werden, um interessierende Zielgrößen anhand bekannter Messwerte schätzen zu können. In rehabilitationswissenschaftlichen Studien werden sehr häufig dichotome Zielgrößen, d. h. Merkmale mit nur zwei Ausprägungen (z. B. erwerbsfähig: ja oder nein), erhoben. Für die Modellierung einer solchen Zielgröße eignet sich das logistische Regressionsmodell. In diesem Beitrag wird dieses in der Praxis häufig angewendete Modell hergeleitet und beschrieben. Ein wichtiger Aspekt für die praktische Anwendung ist die Interpretierbarkeit der Regressionskoeffizienten. Deshalb folgt eine entsprechende Beschreibung, speziell die Schätzung des Risikos durch Vorliegen von Risikofaktoren. Anschließend wird auf Modellierungsaspekte und -probleme hingewiesen, bevor das Modell anhand eines Beispiels aus der rehabilitationswissenschaftlichen Forschung zur Prognose einer Erwerbsunfähigkeit nach stationärer Rehabilitation exemplarisch angewendet wird.

Abstract

Regression analysis is a frequently used tool to examine associations between a dependent (outcome) variable and one or more independent variables. The resulting model enables prediction of an unobserved outcome based on the observed independent variables. In rehabilitation research the dependent variable is quite often dichotomous, i. e. having just two parameter values (e. g. capable of work: yes/no). For such an outcome variable, the logistic regression model can be applied, having specific advantages in interpreting the model parameters with respect to risk factor analysis. In this paper the basics of the logistic regression model, interpretation of the model parameters and special aspects of modelling are presented. Subsequently the logistic regression model is applied to an example dataset for estimating the risk of early retirement after inpatient rehabilitation.

1 Koordinatoren der Reihe „Methoden in der Rehabilitationsforschung ”: Prof. Dr. Dr. Hermann Faller, Würzburg; Prof. Dr.Thomas Kohlmann, Greifswald; Dr. Christian Zwingmann,Siegburg Interessenten, die einen Beitrag zur Reihe beisteuernmöchten, werden gebeten, vorab Kontakt aufzunehmen,Email: E-Mail: christian.zwingmann@web.de

Literatur

1 Koordinatoren der Reihe „Methoden in der Rehabilitationsforschung ”: Prof. Dr. Dr. Hermann Faller, Würzburg; Prof. Dr.Thomas Kohlmann, Greifswald; Dr. Christian Zwingmann,Siegburg Interessenten, die einen Beitrag zur Reihe beisteuernmöchten, werden gebeten, vorab Kontakt aufzunehmen,Email: E-Mail: christian.zwingmann@web.de

Korrespondenzadresse

PD Dr. Rainer Muche

Universität Ulm

Institut für Biometrie

Schwabstr. 13

89075 Ulm

Email: rainer.muche@uni-ulm.de