Subscribe to RSS
DOI: 10.1055/s-2007-993135
© Georg Thieme Verlag KG Stuttgart · New York
Chromogranin A Expression in Phaeochromocytomas Associated with von Hippel-Lindau Syndrome and Multiple Endocrine Neoplasia Type 2
Publication History
received 29.01.2007
accepted 14.05.2007
Publication Date:
28 November 2007 (online)
Abstract
Chromogranin A (CGA) is a major secretory protein present in the soluble matrix of chromaffin granules of neuroendocrine cells and tumours, such as phaeochromocytomas. CGA has several functions, some of which may be involved in the distinct phenotypic differences of phaeochromocytomas in patients with von Hippel-Lindau (VHL) syndrome compared to multiple endocrine neoplasia type 2 (MEN 2). In this study, we therefore compared tumour and plasma levels of CGA in patients with phaeochromocytoma associated with the two syndromes. We show that phaeochromocytomas from MEN 2 patients express substantially more CGA than tumours from VHL patients at both the mRNA (3-fold greater) and protein (20-fold) level. We further show that relative to increases in plasma catecholamines, patients with phaeochromocytomas associated with MEN 2 have higher plasma concentrations of CGA than those with tumours in VHL syndrome. These data supplement other observations that phaeochromocytomas in VHL compared to MEN 2 patients express lower amounts of catecholamines and other chromaffin granule cargo, such as chromogranin B and neuropeptide Y. Possibly the differences in tumour CGA expression may contribute to differences in secretory vesicle formation and secretion in the two types of tumours. Alternatively the differences in expression in CGA and other secretory constituents may reflect downregulation of the entire regulated secretory pathway in VHL compared to MEN 2 tumours.
Key words
chromaffin cells - catecholamines - noradrenaline - adrenaline - granin - exocytosis
References
- 1 Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976; 1 65-80
- 2 Zhang K, Rao F, Wen G, Salem RM, Vaingankar S, Mahata M, Mahapatra NR, Lillie EO, Cadman PE, Friese RS, Hamilton BA, Hook VY, Mahata SK, Taupenot L, O'Connor DT. Catecholamine storage vesicles and the metabolic syndrome: The role of the chromogranin A fragment pancreastatin. Diabetes Obes Metab. 2006; 8 621-633
- 3 Iacangelo AL, Eiden LE, Chromogranin A. current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept. 1995; 58 65-88
- 4 Banks P, Helle K. The release of protein from the stimulated adrenal medulla. Biochem J. 1965; 97 40C-41C
- 5 Helle KB. Some chemical and physical properties of the soluble protein fraction of bovine adrenal chromaffin granules. Mol Pharmacol. 1966; 2 298-310
- 6 Eiden LE, Iacangelo A, Hsu CM, Hotchkiss AJ, Bader MF, Aunis D. Chromogranin A synthesis and secretion in chromaffin cells. J Neurochem. 1987; 49 65-74
- 7 O'Connor DT, Frigon RP. Chromogranin A, the major catecholamine storage vesicle soluble protein. Multiple size forms, subcellular storage, and regional distribution in chromaffin and nervous tissue elucidated by radioimmunoassay. J Biol Chem. 1984; 259 3237-3247
- 8 Yoo SH. Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci. 2000; 23 424-428
- 9 Huttner WB, Natori S. Regulated secretion. Helper proteins for neuroendocrine secretion. Curr Biol. 1995; 5 242-245
- 10 Day R, Gorr SU. Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor?. Trends Endocrinol Metab. 2003; 14 10-13
- 11 Mahata SK, O'Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997; 100 1623-1633
- 12 Ilias I, Pacak K. Diagnosis and management of tumors of the adrenal medulla. Horm Metab Res. 2005; 37 717-721
- 13 Bornstein SR, Gimenez-Roqueplo AP. Genetic testing in pheochromocytoma: increasing importance for clinical decision making. Ann N Y Acad Sci. 2006; 1073 94-103
- 14 Eisenhofer G, Walther MM, Huynh TT, Li ST, Bornstein SR, Vortmeyer A, Mannelli M, Goldstein DS, Linehan WM, Lenders JW, Pacak K. Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab. 2001; 86 1999-2008
- 15 Huynh TT, Pacak K, Brouwers FM, Abu-Asab MS, Worrell RA, Walther MM, Elkahloun AG, Goldstein DS, Cleary S, Eisenhofer G. Different expression of catecholamine transporters in phaeochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Eur J Endocrinol. 2005; 153 551-563
- 16 Eisenhofer G, Goldstein DS, Stull R, Keiser HR, Sunderland T, Murphy DL, Kopin IJ. Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin Chem. 1986; 32 2030-2033
- 17 Cleary S, Brouwers FM, Eisenhofer G, Pacak K, Christie DL, Lipski J, MacNeil AR, Phillips JK. Expression of the Noradrenaline Transporter (NAT) and Phenylethanolamine N-Methyltransferase (PNMT) in Normal Human Adrenal Gland and Phaeochromocytoma. Cell Tissue Res. 2005; 322 443-453
- 18 Ehrhart-Bornstein M, Breidert M, Guadanucci P, Wozniak W, Bocian-Sobkowska J, Malendowicz LK, Bornstein SR. 17 alpha-hydroxylase and chromogranin A in 6th week human fetal adrenals. Horm Metab Res. 1997; 29 30-32
- 19 Eisenhofer G, Lenders JW, Linehan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med. 1999; 340 1872-1979
- 20 Brouwers FM, Gläsker S, Nave AF, Vortmeyer AO, Lubensky I, Huang S, Abu-Asab MS, Eisenhofer G, Weil RJ, Park DM, Linehan WM, Pacak K, Zhuang Z. Proteomic profiling of VHL and MEN 2 pheochromocytomas reveals different expression of chromogranin B. Endocr Relat Cancer. 2007; , in press
- 21 Cleary S, Phillips JK, Huynh T-T, Pacak K, Elkahloun AG, Barb J, Worrell RA, Goldstein DS, Eisenhofer G. Neuropeptide Y expression in phaeochromocytomas: relative absence in tumours from patients with von Hippel-Lindau syndrome. J Endocrinol. 2007; 193 225-233
- 22 Kim T, Zhang CF, Sun Z, Wu H, Loh YP. Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci. 2005; 25 6958-6961
- 23 Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005; 115 1942-1952
- 24 Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell. 2001; 106 499-509
- 25 Courel M, Rodemer C, Nguyen ST, Pance A, Jackson AP, O'Connor DT, Taupenot L. Secretory granule biogenesis in sympathoadrenal cells: identification of a granulogenic determinant in the secretory prohormone chromogranin A. J Biol Chem. 2006; 281 38038-38051
- 26 Taupenot L, Harper KL, O'Connor DT. Role of H+-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A: evidence for a vesiculogenic function. J Biol Chem. 2005; 280 3885-3897
- 27 Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem. 2003; 278 40581-40589
- 28 Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L. Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol. 2006; 20 1935-1947
- 29 Tischler AS, Kimura N, MacNicol AM. Pathology of pheochromocytoma and extra-adrenal paraganglioma. Ann N Y Acad Sci. 2006; 1073 557-570
- 30 Mahata SK, Mahata M, Wakade AR, O'Connor DT. Primary structure and function of the catecholamine release inhibitory peptide catestatin (chromogranin A(344-364)): identification of amino acid residues crucial for activity. Mol Endocrinol. 2000; 14 1525-1535
- 31 Bruce AW, Krejci A, Ooi L, Deuchars J, Wood IC, Dolezal V, Buckley NJ. The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. J Neurochem. 2006; 98 1828-1840
- 32 Huynh TT, Pacak K, Wong DL, Linehan WM, Goldstein DS, Elkahloun AG, Munson PJ, Eisenhofer G. Transcriptional regulation of phenylethanolamine N-methyltransferase in pheochromocytomas from patients with von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Ann N Y Acad Sci. 2006; 1073 241-252
- 33 Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, Munson PJ, Mannelli M, Goldstein DS, Elkahloun AG. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer. 2004; 11 897-911
Correspondence
S. Cleary
School of Veterinary and Biomedical Sciences
Murdoch University
6150 Perth WA
Australia
Phone: +61/89/360 66 92
Fax: +61/89/310 41 44
Email: S.Cleary@murdoch.edu.au