Sprache · Stimme · Gehör 2008; 32(1): 6-11
DOI: 10.1055/s-2007-993137
Schwerpunktthema

© Georg Thieme Verlag KG Stuttgart · New York

Hören lernen - die Bedeutung der ersten Lebensjahre

Acquisition of Hearing - the Importance of the First Years of LifeR. Klinke 1
  • 1Physiologisches Institut II, Sinnes- und Neurophysiologie, Frankfurt/M
Further Information

Publication History

Publication Date:
04 March 2008 (online)

Zusammenfassung

Bei Geburt ist das menschliche Gehirn weitgehend unreif. Reifungsprozesse umfassen das Auswachsen von Axonen, die Bildung von Markscheiden und die Bildung synaptischer Verknüpfungen. Obwohl das Innenohr des Menschen schon intrauterin ausreift, gilt dies für die zentralen Bahnen nur bis zum Hirnstamm. Die weiteren afferenten Verbindungen bilden sich erst später, die meisten bis zum fünften Lebensmonat. Funktionell ist das zentrale Hörsystem erst zur Pubertät voll ausgereift. In der Entwicklungsphase sind die ersten beiden Lebensjahre besonders wichtig, da in dieser Zeit die Neubildung von Synapsen maximal ist. Dies ist für hörgeschädigte Kinder von besonderer Bedeutung, da dieser Umstand zu frühen therapeutischen Bemühungen zwingt. Genetischer Hintergrund für die Entwicklung von Lautsprache ist offenbar das Gen FOXP2.

Abstract

At birth the human brain is immature. Maturation requires the sprouting of axons, myelinization and the formation and stabilization of synapses. Although the inner ear is functional already between the 26th and 29th week of fetal life, during this period afferent central connections only reach up to the brain stem. The further afferent pathways reaching finally the auditory cortex are formed later up to the 5th month of life. Nevertheless, they are not fully functional then. Final functional maturation takes up to the age of puberty. The first two years of life, however, are most important for central maturation, as most new synapses are formed during this period. It is thus mandatory to start treatment of hearing impaired children early during this period. Genetic background for development of speech and language is apparently the gene FOXP2.

Literatur

  • 1 Bayazit YA, Yilmaz M. An overview of hereditary hearing loss.  ORL J Otorhinolaryngol Relat Spec. 2006;  68 57-63
  • 2 Svirsky MA, Teoh SW, Neuburger H. Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation.  Audiol Neurootol. 2004;  9 224-233
  • 3 Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex.  J Comp Neurol. 1997;  387 167-178
  • 4 Johannson B, Wedenberg E, Westin B. Fetal heart rate response to acoustic stimulation in relation to fetal development and hearing impairment.  Acta Obstet Gynecol Scand. 1992;  71 610-615
  • 5 Klinke R, Pape HC, Silbernagl S. Physiologie. 5. Aufl. Stuttgart Thieme 2005
  • 6 Clifton RK. The development of spatial hearing in human infants. In: Werner LA, Rubel EW (Eds). Developmental psychoacoustics. Washington: Am Psychol Ass 1992: 135-157
  • 7 Hartley DE, Wright BA, Hogan SC, Moore DR. Age-related improvements in auditory backward and simultaneous masking in 6-to 10-years old children.  J Speech Lang Hear Res. 2000;  43 1402-1415
  • 8 Illing EB. Maturation and plasticity of the central auditory system.  Acta otolaryng (Stockh.). 2004;  ((Suppl. 552)) 6-10
  • 9 Singer W. Hirnentwicklung: Neuronale Plastizität und Lernen. In: Klinke R, Silbernagl S (eds.): Lehrbuch der Physiologie. 2. Aufl. Thieme Stuttgart 1996: 709-720
  • 10 Moore JK, Guan YL, Shi SR. Axogenesis in the human fetal auditory system, demonstrated by neurofilament immunohistochemistry.  Anat Embryol. 1997;  195 15-30
  • 11 Katz LC, Shatz CJ. Synaptic acitivty and the construction of cortical circuits.  Science. 1996;  274 1133-1138
  • 12 Pantev C, Oostenveld R, Engelien A. et al . Increased auditory cortical representation in musicians.  Nature. 1998;  392 811-814
  • 13 Shahin AJ, Roberts LE, Pantev C. et al . Enhanced anterior-temporal processing for complex tones in musicians.  Clin Neurophysiol. 2007;  118 209-220
  • 14 Zhang LI, Bao S, Merzenich MM. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period.  Proc Natl Acad Sci USA. 2002;  99 2309-2314
  • 15 Harrison RV, Stanton SG, Ibrahim D. et al . Neonatal cochlear hearing loss results in developmental abnormalities of the central auditory pathways.  Acta Otolaryngol. 1993;  113 296-302
  • 16 Merzenich MM, Jenkins WM, Johnston P. et al . Temporal processing deficits of language-learning impaired children ameliorated by training.  Science. 1996;  271 77-81
  • 17 Welsh LW, Welsh JJ, Healy MP. Early sound deprivation and long-term hearing.  Ann Otol Rhinol Laryngol. 1996;  105 877-881
  • 18 Moore JK. Maturation of human auditory cortex: Implications for speech perception.  Am Otol Rhinol Laryngol. 2002;  111 ((Suppl. 189)) 7-10
  • 19 Moore JK, Guan YL. Cytoarchitectural and axonal maturation in human auditory cortex.  JARO. 2001;  2 297-311
  • 20 Eggermont J. Development of auditory evoked potentials.  Acta Otolaryng (Stockh.). 1992;  112 197-200
  • 21 Eggermont JJ, Ponton CW. The neurophysiology of auditory perception: From single units to evoked potentials.  Audiol Neurootol. 2002;  7 71-99
  • 22 Eggermont JJ, Ponton CW. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception.  Acta Otolaryngol. 2003;  123 249-252
  • 23 Casper AJ de, Fifer WP. Of human bonding: Newborns prefer their mothers’ voice.  Science. 1980;  208 1174-1176
  • 24 Werker JF, Gilbert JHV, Humphrey K, Tees RC. Developmental aspects of cross-language speech perception.  Child Dev. 1981;  52 349-355
  • 25 Luo H, Poeppel D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex.  Neuron. 2007;  54 1001-1010
  • 26 McNealy K, Mazziotta JC, Dapretto M. Cracking the language code: Neural mechanisms underlying speech parsing.  J Neurosci. 2006;  26 7629-7639
  • 27 Fitch RH, Miller S, Tallal P. Neurobiology of speech perception.  Ann Rev Neurosci. 1997;  20 331-353
  • 28 Kuhl PK. A new view of language acquisition.  Proc Natl Acad Sci. 2000;  97 11850-11857
  • 29 Ruben RJ. A time frame of critical/sensitive periods of language development.  Acta Oto-Laryngol. 1997;  117 202-205
  • 30 Heid S, Hartmann R, Klinke R. A model for prelingual deafness, the congenitally deaf white cat-population statistics and degenerative changes.  Hear Res. 1998;  115 101-112
  • 31 Klinke R, Kral A, Heid S. et al . Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation.  Science. 1999;  285 1729-1733
  • 32 Kral A, Hartmann R, Klinke R. Recruitment of the auditory cortex in congentially deaf cats. In: Lomber S, Eggermont JJ (Eds). Reprogramming the cerebral cortex. Oxford Univ Press 2006: 193-212
  • 33 Kral A, Hartmann R, Tillein J. et al . Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner.  Cereb Cortex. 2000;  10 714-726
  • 34 Kral A, Hartmann R, Tillein J. et al . Hearing after congenital deafness: Central auditory plasticity and sensory deprivation.  Cereb Cortex. 2002;  12 797-807
  • 35 Kral A, Tillein J, Heid S. et al . Postnatal cortical development in congential auditory deprivation.  Cereb Cortex. 2005;  15 552-562
  • 36 Yan J. Development and plasticity of the auditory cortex.  Can J Neurol Sci. 2003;  30 189-200
  • 37 Ponton CW. Critical periods for human cortical development. In: Lomber S, Eggermont JJ (Eds). Reprogramming the cerebral cortex. Oxford Univ Press 2006: 213-228
  • 38 Sharma A, Dorman MF, Spahr AJ. Rapid development of cortical auditory evoked potentials after early cochlear implantation.  Neuroreport. 2002;  13 1365-1368
  • 39 Ponton CW, Eggermont JJ. Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use.  Audiol Neurootol. 2001;  6 363-380
  • 40 Neville HJ, Mills DL, Lawson DS. Fractionating language: Different neural subsystems with different sensitive periods.  Cereb Cortex. 1992;  2 244-258
  • 41 Eggermont JJ, Ponton CW, Con M. et al . Maturational delays in cortical evoked potentials in cochlear implant users.  Acta Oto Laryngol. 1997;  117 161-163
  • 42 Fryauf-Bertschy H, Tyler RS, Kelsay DMR. et al . Cochlear implant use by prelingually deafened children: The influences of age at implant and length of device use.  J Speech Lang Hear Res. 1997;  40 183-199
  • 43 Klinke R, Kral A, Hartmann R. Sprachanbahnung überelektronische Ohren - so früh wie möglich.  Deutsches Ärzteblatt. 2001;  98 A3049-A3052
  • 44 Lai CSL, Gerelli D, Monaco AP. et al . FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder.  Brain. 2003;  126 2455-2462
  • 45 Vorgha-Khadem F, Gadian DG, Copp A, Mishkin M. FOXP2 and the neuroanatomy of speech and language.  Nat Rev Neurosci. 2005;  6 131-138
  • 46 Lennon PA, Cooper ML, Peiffer DA. et al . Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: Clinical report and review.  Am J Med Genet A. 2007;  143 791-798
  • 47 White SA, Fisher SE, Geschwind DH. et al . Singing mice, songbirds and more: Models for FOXP2 function and dysfunction in human speech and language.  J Neurosci. 2006;  11 10376-10379

Korrespondenzadresse

Prof. em. Dr. med. R. Klinke

Bruno-Stürmer-Str. 31

60529 Frankfurt/M

Email: klinke@em.uni-frankfurt.de