Pharmacopsychiatry 2007; 40: S2-S16
DOI: 10.1055/s-2007-993139
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

“Computational Neuropsychiatry” of Working Memory Disorders in Schizophrenia: The Network Connectivity in Prefrontal Cortex - Data and Models

F. Tretter 1 , M. Albus 1
  • 1Department of Addiction, Isar-Amper-Hospital, Haar/Munich, Germany
Further Information

Publication History

Publication Date:
17 December 2007 (online)

Abstract

The use of mathematical and computer-assisted modeling of brain mechanisms involved in mental disorders can be called “Computational Neuropsychiatry”. It was already demonstrated by several initiatives that computational modeling is an important contribution to understand neuronal circuits that could generate mental functions and dysfunctions. However, this attempt needs close collaboration between experimental neurobiologists, clinical psychiatry and systems science. In order to do so, we have organized a series of workshops on computational neuropsychiatry. Here we try to give basic information on data and modeling of the prefrontal cortical neurocircuitry that is involved in working memory and its disorders in schizophrenia. Special emphasis is devoted to the basic features of computational modeling.

References

  • 1 Alon U. Systems Biology - Design principles of biological circuits. New York: Chapman & Hall 2007
  • 2 Heiden U. Schizophrenia as a dynamical disease.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 36-42
  • 3 Abbott LF, Regehr WG. Synaptic computation.  Nature. 2004;  431 ((7010)) 796-803
  • 4 Arbib MA. (Ed). The Handbook of Brain Theory and Neural Networks, 2nd edition. Cambridge, MA: MIT Press 2002
  • 5 Arbib MA, Grethe JS. Computing the brain: A guide to neuroinformatics. San Diego: Academic Press 2001
  • 6 Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology?.  Perception. 1972;  1 371-394
  • 7 Bender W, Albus M, Möller H-J, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 4-9
  • 8 Boccara N. Modeling complex systems. Berlin: Springer 2004
  • 9 Braun HA, Huber MT, Anthes N, Voigt K, Neiman A, Moss F. Noise induced impulse pattern modifications at different dynamical period-one situations in a computer-model of temperature encoding.  Biosystems. 2001;  62 99-112
  • 10 Brunel N, Wang X-J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition.  J Comput Neurosci. 2001;  11 63-85
  • 11 Carlsson A. The current status of the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1988;  1 179-186
  • 12 Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia- therapeutic implications.  Eur Arch Psychiatry Clin Neurosci. 1999;  249 ((Suppl. 4)) 37-43
  • 13 Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence.  Annu Rev Pharmacol Toxicol. 2001;  41 237-260
  • 14 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharamcopsychiatry. 2006;  39 ((Suppl.1)) 10-14
  • 15 Cohen JD, Servan-Schreiber D. A theory of dopamine function and cognitive deficits in schizophrenia.  Schizophr Bull. 1993;  19 ((1)) 85-104
  • 16 Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.  Cereb Cortex. 2000;  10 910-923
  • 17 Constantinidis C, Goldman-Rakic PS. Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex.  J Neurophysiol. 2002;  88 3487-3497
  • 18 Constantinidis C, Wang X-J. A neural circuit basis for spatial working memory.  Neuroscientist. 2004;  10 553-565
  • 19 Dayan P, Abbott L. Theoretical Neuroscience. Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press 2005
  • 20 Dayan P, Williams J. Putting the computation back into computational modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 50-51
  • 21 De Felipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN. Distribution and patterns of connectivity of interneurons containing calbindin, calretinin and parvalbimun in visual cortex and temporal lobes of macaque monkeys.  J Comp Neurol. 1999;  412 515-526
  • 22 Deco G. A dynamical model of event-related fMRI signals in prefrontal cortex: predictions for schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 65-67
  • 23 Douglas R, Markram H, Martin K. Neocortex. In: Shepherd G, (Ed). The synaptic organization of the brain. New York: Oxford University Press 2004: 499-558
  • 24 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 72-75
  • 25 Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.  J Neurophysiol. 2000;  83 1733-1750
  • 26 Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.  J Neurophysiol. 1989;  61 331-349
  • 27 Gao W-J, Goldman-Rakic PS. Selective modulation of excitatory and inhibitory micro-circuits by dopamine.  Proc Natl Acad Sci USA. 2003;  100 ((5)) 2836-2841
  • 28 Gao WJ, Wang Y, Goldman-Rakic PS. Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex.  J Neurosci. 2003;  23 1622-1630
  • 29 Goldman-Rakic PS. Cellular basis of working memory.  Neuron. 1995;  14 477-485
  • 30 Goldman-Rakic PS. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia.  Biol Psychiatry. 1999;  456 650-661
  • 31 Goldman-Rakic PS, Muly  3rd  EC, Williams GV. D1 receptors in prefrontal cells and circuits.  Brain Res Rev. 2000;  31 295-301
  • 32 Grace AA, Bunney BS. Electrophysiological properties of midbrain dopamine neurons.  Psychopharmacology - The Fourth Generation of Progress. Neuropsychopharmacology. 2000; 
  • 33 Grillner S, Kozlov A, Kotaleski JH. Integrative neuroscience: linking levels of analyses.  Curr Opin Neurobiol. 2005;  15 614-621
  • 34 Grillner S, Hellgren J, Menard A, Saitoh K, Wikström MA. Mechanisms for selection of basic motor programs - roles for the striatum and pallidum.  Trends Neurosci. 2005;  28 ((7)) 364-370
  • 35 Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions thorugh the membrane of the giant axon of Loligo.  J Physol. 1952;  116 449-472
  • 36 Hoffman RETH. Using a speech perception neural network computer simulation to contrast neuroanatomic versus neuromodulatory models of auditory hallucinations.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 54-64
  • 37 Hoppenstaedt FC. An Introduction to the mathematics of neurons. Cambridge: Cambridge University Press 1986
  • 38 Hubel DH, Wiesel TN. The functional architecture of the macaque visual cortex.  Proc R Soc Lond Biol Sci. 1977;  198 1-59
  • 39 Kawaguchi Y, Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex.  Cereb Cortex. 1997;  7 476-486
  • 40 Kitano H. (Ed.) Foundations of Systems Biology. Cambridge,MA: MIT Press 2001
  • 41 Klipp E, Herwig R, Kowald A, Wielring C, Lehrach H. Systems Biology in Practice. Weinheim: Wiley-VCH 2005
  • 42 Levitt B, Lewis DA, Yoshioka T, Lund J. Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46).  J Comp Neurol. 1993;  338 360-376
  • 43 Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia.  Nat Rev Neurosci. 2005;  6 312-324
  • 44 Lorente de No R. Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF, (Ed). Physiology of the nervous system. New York: Oxford University Press 1949: 288-313
  • 45 Mainzer K. Thinking in Complexity. Berlin: Springer 2007
  • 46 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders.  Nat Rev Neurosci. 2006;  7 ((10)) 818-827
  • 47 Mountcastle VB. The mindful brain Part I. Cambridge, MA: MIT Press 1978
  • 48 Muly  3rd  EC, Szigeti K, Goldman-Rakic PS. D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization.  J Neurosci.. 1998;  18 ((24)) 10553-10565
  • 49 O’Donnell P. Dopamine gating of forebrain neural ensembles.  Eur J Neurosci. 200;  17 429-435
  • 50 O’Donnell P. Presentation at 3rd International Workshop on Computational Neuropschiatry. Haar/Munich 2006
  • 51 O’Donnell P, Grace AA. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input.  J Neurosci. 1995;  15 3622-3639
  • 52 Palsson BO. Systems Biology. Cambridge: Cambridge University Press 2006
  • 53 Peitgen H-O, Jürgens H, Saupe D. Chaos and Fractals. Berlin: Springer 2004
  • 54 Seamans JK, Durstewitz D, Christie B, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.  Proc Natl Acad Sci USA. 2001;  98 301-306
  • 55 Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Progr Neurobiol. 2004;  74 1-57
  • 56 Schlösser RT, Gesierich B, Kaufmann G, Vucurevic G, Hunsche S, Gawehn J, Stoeter P. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modelling.  Neuroimage. 2003;  19 751-763
  • 57 Schultz W. Predictive reward signal of dopamine mechanisms.  J Neurophysiol. 1998;  80 1-27
  • 58 Schwegler H. Phenomenological modelling of some mechanisms in schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 43-49
  • 59 Shepherd G. Introduction to synaptic circuits. In: Shepherd G (Ed). The synaptic organization of the brain. New York: Oxford University Press 2004: 1-38
  • 60 Singer W. Search for Coherence: a basic principle of cortical self-organization.  Concepts Neurosci. 1990;  1 1-26
  • 61 Singer W. Neuronal synchrony: a versatile code for the definition of relations?.  Neuron. 1999;  24 49-65
  • 62 Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, MacCarley R. Neural synchrony indexes disordered perception and cognition in schizophrenia.  Proc Natl Acad Sci USA. 2004;  101 ((49)) 17288-17293
  • 63 Sterman J. Business dynamics. New York : McGraw-Hill 2000
  • 64 Szentagothai J. The neuron network of the cerebral cortex: a functional interpretation.  Proc R Soc Lond Biol Sci. 1978;  201 219-248
  • 65 Tegnér J, Compte A, Wang X-J. Dynamical stability of reverberatory neural circuits.  Biol Cybern. 200;  87 471-481
  • 66 Tretter F. Perspektiven der mathematischen Systemtheorie in der biologischen Psychiatrie.  Krankenhauspsychiatrie. 2004;  15 77-84
  • 67 Tretter F. Systemtheorie im klinischen Kontext. Lengerich: Pabst 2005
  • 68 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 26-35
  • 69 Tretter F, Müller WE. (Ed). Systems biology and psychiatry - modeling molecular networks in mental disorders. Pharmacopsychiatry, in prep
  • 70 Tretter F, Müller WE, Carlsson A. , (Ed) Systems science, computational science and neurobiology of schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1))
  • 71 Vogels T, Rajan K, Abbott LF. Neural network dynamics.  Annu Rev Neurosci. 2005;  28 357-376
  • 72 Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and n-methyl-d-aspartate receptor interactions in schizophrenia treatment.  Neuroscientist. 2005;  11 452-470
  • 73 Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration.  J Neurosci. 1996;  16 (5) 1922-1935
  • 74 Yang CR, Seamans JK, Gorelova N. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.  Neuropsychopharmacology. 1999;  21 161-194
  • 75 Wang M, Vijayraghavan SP, Goldman-Rakic ps. Selective D2 receptor actions on the functional circuitry of working memory.  Science. 2004;  303 853-856
  • 76 Wang X-J, Tegnér J, Constandinidis C, Goldman-Rakic PS. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.  Proc Natl Acad Sci USA. 2004;  101 1368-1373
  • 77 Wang X-J. Towards a prefrontal microcircuit model for cognitive deficits in schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 80-87
  • 78 Wang X-J. A microcircuit model of prefrontal functions: ying and yang of reverberatory neurodynamics in cognition. In: Risberg J, Gafman J, (Ed). The frontal lobes. Development, function and pathology. Cambridge: Cambridge University Press 2006
  • 79 Winterer G. Cortical microcircuits in schizophrenia - the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 68-71
  • 80 Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise-ratio in schizophrenia.  Trends Neurosci. 2004;  27 ((11)) 683-690
  • 81 Wood SJ, Pantelis C, Proffitt T, Phillips LJ, Stuart GW, Buchanan JA. et al . Spatial working memory ability is a marker of risk-for-psychosis.  Psychol Med. 2003;  33 1239-1247
  • 82 Zeigler BP, Praehofer H, Kim TG. Theory of Modeling and Simulation, 2nd Edition. New York: Academic Press 2000

Correspondence

Prof. Dr. Dr. Dr. F. Tretter

Department of Addiction

Isar-Amper-Hospital

Ringstr. 9

85529 Haar/Munich

Germany

Phone: 00 49/89/4562 37 08

Fax: 00 49/89/4562 37 54

Email: Felix.Tretter@IAK-KMO.de